Mutagenic and antimutagenic evaluation of Asparagus laricinus Burch., Senecio asperulus DC., and Gunnera perpensa L. to hepatic cells

Authors

DOI:

https://doi.org/10.20883/medical.e745

Keywords:

neutral red uptake, VITOTOX, Alkaline Comet assay, VITOTOX , Alkaline Comet assay, DNA mutation toxicity

Abstract

Introduction. The use of traditional medicinal plant concoctions to cure or treat different diseases daily in African folk medicine. However, the effects of most medicinal plants on human health or genetic material remain unknown. This study thus aimed to evaluate the mutagenic and antimutagenic potentials of Asparagus laricinus Burch. cladodes, Senecio asperulus DC., and Gunnera perpensa L. roots extract in vitro.

Material and methods. Neutral red uptake assay, alkaline comet assay, and the VITOTOX test was used with plant extract dilutions of 4, 20, 50, and 100 µg/ml, respectively, on hepatic (C3A) cells and Salmonella Typhimurium TA104 strains. Ethyl methane-sulfonate and 4-nitroquinoline oxide were used as positive controls for the comet and VITOTOX assays, respectively.

Results.  In vitro cytotoxicity and genotoxicity were not observed from all tested extracts, except for the two dichloromethane (DCM) extracts of S. asperulus and G. perpensa, which appeared to be cytotoxic with S9 metabolic activation, but not genotoxic or mutagenic. From the VITOTOX test results, none of the extracts appeared to have antimutagenic properties after treating S. Typhimurium strains with a known mutagen.

Conclusions. These results confirm that previously reported anticarcinogenic properties of A. laricinus, S. asperulus, and G. perpensa did not result from the protective mechanism against genotoxicity but from other ones. Moreover, the negative mutagenic and cytotoxic activities of the tested plants highlighted the safe use of these medicinal plants in vitro. Therefore, S. asperulus and G. perpensa DCM extracts require further investigation for their possible in vivo cytotoxic effects on humans.

Downloads

Download data is not yet available.

References

Abd Razak, M, F., K.E. Aidoo and A.G. Candlish, 2007. Mutagenic and cytotoxic properties of three herbal plants from Southeast Asia. Trop Biomed, 24(2): 49-59. https://europepmc.org/article/med/18209708

Roy, A., T. Attre and N. Bharadvaja, 2017. Anticancer agent from medicinal plants: a review. In book: New aspects in medicinal plants and pharmacognosy, 1st edition.;1(3): 54-73. https://www.researchgate.net/profile/Arpita-Roy-3/publication/318721809_Anticancer_agent_from_medicinal_plants_a_review/links/597ace074585151e35aea568/Anticancer-agent-from-medicinal-plants-a-review.pdf

Verschaeve, L., H. Edziri, R. Anthonissen, D. Boujnah, F. Skhiri and H Chehab, 2017. In vitro toxicity and genotoxic activity of aqueous leaf extracts from four varieties of Olea europea (L). Pharmacog Magazine, 13(S1): S63-S80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407118/

Verschaeve, L., J. Van Gompel, L. Thilemans, L. Regniers, P. Vanparys and D. Van der Lelie, 1999. VITOTOX® bacterial genotoxicity and toxicity test for the rapid screening of chemicals. Environ and Mol Mutagen, 33(3): 240-8. https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1098-2280(1999)33:3%3C240::AID-EM8%3E3.0.CO;2-R

Griffiths, A.J., J.H. Miller, D.T. Suzuki, R.C. Lewontin and W.M. Gelbart, 2000. Quantifying heritability. In Freeman WH, ed. An Introduction to Genetic Analysis, 7th edition.. http://lgb.rc.unesp.br/biomol/literatura/Griffiths_8th.pdf

Bouguellid, G., C. Russo, M. Lavorgna, C. Piscitelli, K. Ayouni, E. Wilson, H.K. Kim, R. Verpoorte, Y.H. Choi, D. Kilani-Atmani, D. Atmani, M. Isidori, 2020. Antimutagenic, antigenotoxic and antiproliferative activities of Fraxinus angustifolia Vahl. leaves and stem bark extracts and their phytochemical composition. PLoS One, 16;15(4):e0230690. https://pubmed.ncbi.nlm.nih.gov/32298276/

Mustapha, A.A, 2014. Medicinal plants with possible anti-HIV activities: A review. Int J Med Plants, 106: 439-53 https://clinphytoscience.springeropen.com/articles/10.1186/s40816-015-0004-1

Mashele, S.S. and N. Kolesnikova, 2010. In vitro anticancer screening of Asparagus laricinus extracts. Pharmacologyonline, 2(1): 246–252. https://pharmacologyonline.silae.it/files/archives/2010/vol2/023.Mashele.pdf

Mfengwana, P.H. and S.S Mashele, 2019. Medicinal Properties of Selected Asparagus Species: A Review. In: Roa V, Mans D, Roa L, eds. Phytochemicals in Human Health. London. Intechopen. https://www.intechopen.com/chapters/67855

Fuku, S., A.M. Al-Azzawi, I.T. Madamombe-Manduna and S. Mashele, 2013. Phytochemistry and free radical scavenging activity of Asparagus laricinus. Int J Pharmacol.9(5): 312-17. https://scialert.net/fulltext/?doi=ijp.2013.312.317

Ntsoelinyane, P.H. and S.S Mashele, 2014. Phytochemical screening, antibacterial and antioxidant activities of Asparagus laricinus leaf and stem extracts. Bangladesh J Pharmacol, 9: 10-4. https://www.semanticscholar.org/paper/Phytochemical-screening%2C-antibacterial-and-of-leaf-Ntsoelinyane-Mashele/72c699d9275e4802f2b92e998e2c9222ca29db8d

Mfengwana, P.H., S.S. Mashele and I.T. Manduna, 2019. Cytotoxicity and cell cycle analysis of Asparagus laricinus Burch. and Senecio asperulus DC. on breast and prostate cancer cell lines. Heliyon, 5(5):e01666. https://www.sciencedirect.com/science/article/pii/S2405844019324715

Mugomeri, E., P. Chatanga, S. Hlapisi, L. Rahlao, 2014. Phytochemical characterization of selected herbal products in Lesotho. Lesotho Med Asso J, 12: 38–47. https://www.ajol.info/index.php/ajtcam/article/view/130715

Moteetee, A. and B. Van Wyk, 2011. The medical ethnobotany of Lesotho: a review. Bothalia, 41(1): 209-228. http://www.ethnopharmacologia.org/prelude2020/pdf/biblio-hm-44-moteetee.pdf

Kose, L.S., A. Moteetee, S. Van Vuuren, 2015. Ethnobotanical survey of medicinal plants used in the Maseru district of Lesotho. J Ethnopharmacol, 170: 184–200. https://pubmed.ncbi.nlm.nih.gov/25957810/

Quattrocchi, U, 2016. CRC World Dictionary of Medicinal and Poisonous Plants. Common Names, Scientific Names, Eponyms, Synonyms, and Etymology. Boca Raton: Taylor & Francis Group. https://doi.org/10.1201/b16504

Mammo, F., V. Mohanlall and F. Shode, 2017. Gunnera perpensa L.: a multi-use ethnomedicinal plant species in South Africa. Afr J Sci Technol Innov Dev. DOI: 10.1080/20421338.2016.1269458

Maroyi, A, 2016. From Traditional Usage to Pharmacological Evidence: Systematic Review of Gunnera perpensa L. J Evid Based Complement Altern Med, 17: 14-25. https://www.researchgate.net/publication/311501497_From_Traditional_Usage_to_Pharmacological_Evidence_Systematic_Review_of_Gunnera_perpensa_L

Simelane, M., O.A. Lawal, T.G. Djarova, C.T. Musabayane, M. Singh, and A.R. Opoku, 2012. Lactogenic activity of rats stimulated by Gunnera perpensa L. (Gunneraceae) from South Africa. Afr J Tradit, Complement Altern Med, 9(4): 561–573. https://www.researchgate.net/publication/256189785_Lactogenic_Activity_of_Rats_Stimulated_by_Gunnera_Perpensa_L_Gunneraceae_from_South_Africa

Chigor, C.B, 2014. Development of conservation methods for Gunnera perpensa L.: an overexploited medicinal plant in the Eastern Cape, South Africa. PhD Thesis, University of Fort Hare.. https://core.ac.uk/download/pdf/145034661.pdf

Khan, F., X.K. Peter, R.M. Mackenzie, L. Katsoulis, R. Gehring, O.Q. Munro, R. van Heerden and S.E. Drewes, 2004. “Venusol From Gunnera perpensa: Structural and Activity Studies.” Phytochemistry, 65(8): 1117–21. https://www.sciencedirect.com/science/article/abs/pii/S0031942204000986

Ndhlala, A.R., J.F. Finnie and J. Van Staden, 2011. Plant composition, pharmacological properties and mutagenic evaluation of a commercial Zulu herbal mixture: Imbiza ephuzwato. J Ethnopharmacol, 133(2): 663-74. https://www.sciencedirect.com/science/article/pii/S0378874110007634

Efferth, T. and B. Kaina, 2011. Toxicities by herbal medicines with emphasis to traditional Chinese medicine. Curr Drug Metab, 12(10): 989-96. https://www.ingentaconnect.com/content/ben/cdm/2011/00000012/00000010/art00009

Cardoso, C.R., I.M. de Syllos Cólus, C.C. Bernardi, M. Sannomiya, W. Vilegas, E.A. Varanda, 2006. Mutagenic activity promoted by amentoflavone and methanolic extract of Byrsonima crassa Niedenzu. Toxicol, 225(1): 55-63. https://www.sciencedirect.com/science/article/pii/S0300483X06002812

Déciga-Campos, M., I. Rivero-Cruz, M. Arriaga-Alba, G. Castañeda-Corral, G.E. Angeles-López, A. Navarrete. And R. Mata, 2007. Acute toxicity and mutagenic activity of Mexican plants used in traditional medicine. J Ethnopharmacol, 110(2): 334-42. https://www.sciencedirect.com/science/article/pii/S0378874106005034

Repetto, G., A. Del Peso. and J.L. Zurita, 2008. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc, 3(7): 1125-31. https://www.nature.com/articles/nprot.2008.75

Olive, P.L. and J.P. Banáth, 2006. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc, 1: 23–29 https://www.researchgate.net/publication/6416166_Olive_PL_Banath_JP_The_comet_assay_a_method_to_measure_DNA_damage_in_individual_cells_Nat_Protoc_1_23-29

Verschaeve, L., 2005. The VITOTOX® genotoxicity test. In Pandalai SG, ed. Recent research developments in applied microbiology and biotechnology. India: Research Signpost;.pp. 33-49. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17893276

Collins, A.R., 2011. The use of bacterial repair endonucleases in the comet assay. In Gautier JC, ed. Drug Safety Evaluation. Methods in Molecular Biology, Vol 691.New Jersey: Humana Press; pp. 137-47. https://link.springer.com/protocol/10.1007/978-1-60761-849-2_8

Makhuvele, R., K. Foubert, S. Apers, L. Pieters, L. Verschaeve and E. Elgorashi, 2018. Antimutagenic constituents from Monanthotaxis caffra (Sond.) Verdc. J Pharm Pharmacol, 70(7): 976-84. https://academic.oup.com/jpp/article/70/7/976/6121861?login=true

Vaghasiya, Y., R. Dave and S. Chanda, 2011. Phytochemical analysis of some medicinal plants from western region of India. Res J Medicinal Plant, 5(5): 567-76. https://www.cabdirect.org/globalhealth/abstract/20123177659

Biran, A., H.B. Yoav, S. Yagur-Kroll, R. Pedahzur, S. Buchinger, Y. Shacham-Diamand, G. Reifferscheid and S. Belkin, 2011. Microbial genotoxicity bioreporters based on sulA activation. Anal Bioanal Chem, 400(9): 3013-24. https://link.springer.com/article/10.1007/s00216-011-5007-2

Słoczyńska, K., B. Powroźnik, E. Pękala and A.M. Waszkielewicz, 2014. Antimutagenic compounds and their possible mechanisms of action. J Appl Genet, 55(2): 273-85. https://link.springer.com/article/10.1007/s13353-014-0198-9

Azqueta, A. and A.R. Collins, 2013. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch Toxicol, 87(6): 949-68. https://link.springer.com/article/10.1007%2Fs00204-013-1070-0

Chang, J.B., M.F. Wu, H.F. Lu, J, Chou, M.K. Au, N.C. Liao, C.H. Chang, Y.P. Huang, C.T. Wu, and J.G. Chung, 2013. Toxicological evaluation of Antrodia cinnamomea in BALB/c mice. In Vivo, 27(6): 739-45. https://iv.iiarjournals.org/content/27/6/739.short

Mashele, S.S. and S. Fuku, 2011. Evaluation of the antimutagenic and mutagenic properties of Asparagus laricinus. J Med Technol, 2: 33-36. https://www.semanticscholar.org/paper/Evaluation-of-the-antimutagenic-and-mutagenic-of-Mashele-Fuku/a9e076d98f8993f79a0dac125ad4669986adf268

Mfengwana, P, 2019. Evaluation of Pharmacological Properties of Traditional Medicinal Plants Used For The Treatment Of Cancer By South African And Lesotho Communities. http://hdl.handle.net/11462/2032

Mokgawa, S.D, 2016. Toxicology of Asparagus laricinus in rats. http://ir.cut.ac.za/bitstream/handle/11462/1332/Mokgawa%2C%20Sekobane%20Daniel.pdf?sequence=1&isAllowed=y

Edziri, H., M. Mastouri, A. Mahjoub, R. Anthonissen, B. Mertens, S. Cammaerts, L. Gevaert and L. Verschaeve, 2011. Toxic and mutagenic properties of extracts from Tunisian traditional medicinal plants investigated by the neutral red uptake, VITOTOX and alkaline comet assays. S Afr J Bot, 77: 703–710. https://www.sciencedirect.com/science/article/pii/S0254629911000214

Gautam, S., S. Saxena and S. Kumar, 2016. Fruits and vegetables as dietary sources of antimutagens. J Food Chem Nanotechnol, 2(3): 97-114. https://foodchemistryjournal.com/jfcn/articles/v2n3/jfcn-018-satyendra-gautam.pdf

El-Sayed, W.M. and W.A. Hussin, 2013. Antimutagenic and antioxidant activity of novel 4-substituted phenyl-2, 2′-bichalcophenes and aza-analogs. Drug Des Dev Ther, 7: 73-81. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573810/

Ferguson, L.R. and M. Philpott, 2008. Nutrition and mutagenesis. Annu. Rev. Nutr, 28:313-29. https://www.annualreviews.org/doi/abs/10.1146/annurev.nutr.28.061807.155449

Fronza, G., P. Campomenosi, R. lannone, and A. Abbondandolo, 1992. The 4-nitroquinoline 1-oxide mutational spectrum in single-stranded DNA is characterized by guanine to pyrimidine transversions. Nucleic Acids Res, 20(6): 1283-7. https://academic.oup.com/nar/article-abstract/20/6/1283/2386751

Brookes, K.B. and M.F. Dutton, 2007. Bioactive Components of the Uteroactive Medicinal Plant, Gunnera Perpensa (or Ugobo). S Afr J Sci, 103 (5): 187–189. http://www.scielo.org.za/pdf/sajs/v103n5-6/07.pdf

Downloads

Published

2022-12-27

Issue

Section

Original Papers

How to Cite

1.
Mfengwana P-M-AH. Mutagenic and antimutagenic evaluation of Asparagus laricinus Burch., Senecio asperulus DC., and Gunnera perpensa L. to hepatic cells. JMS [Internet]. 2022 Dec. 27 [cited 2025 Jan. 23];91(4):e745. Available from: https://jms.ump.edu.pl/index.php/JMS/article/view/745
Received 2022-09-25
Accepted 2022-10-23
Published 2022-12-27