Estimation of Phagocytic Activity by Normal Human Peripheral Blood Mononuclear Cells on Various Oral Isolates of Candida Species: an in-vitro Study

Authors

  • PJ Sreelakshmi Department of Medical Microbiology, School of Medical Education, Centre for Professional and Advanced Studies, Kottayam, Kerala, India
  • Kumar KS Harish Department of Medical Microbiology, School of Medical Education, Centre for Professional and Advanced Studies, Kottayam, Kerala, India https://orcid.org/0000-0002-0504-7794
  • Jacob Kuruvilla Department of Public Health Dentistry, Mar Baselios Dental College, Ernakulam, Kerala, India
  • Philip George Theckel Electron Microscopy Unit, Faculty of Medicine, Kuwait University, Kuwait

DOI:

https://doi.org/10.20883/medical.e953

Keywords:

phagocytic activity, candida species, respiratory burst, nitroblue tetrazolium test, antifungal susceptibility

Abstract

Polymorphonuclear neutrophils (PMN) and mononuclear phagocytes represent an important first line and effector function in controlling Candida infections. The study aims to determine the in-vitro phagocytic activity of human peripheral blood mononuclear cells against oral isolates of Candida species and its antifungal susceptibility. The study also evaluates the degree of respiratory burst activity of PBMCs. Phagocytic and lytic indices by PBMCs were determined for Candida spp. The respiratory burst activity was evaluated using a nitroblue tetrazolium test. Antifungal disc diffusion susceptibility testing was performed.

100 Candida were isolated, belonging to C. albicans, C. tropicalis, C. krusei and C. auris. The phagocytic and lytic indices of C. albicans were significant compared to the standard strain of C. albicans. C. tropicalis and C. krusei phagocytic index were significant, while the lytic index was insignificant compared to the standard strain. The inter-species comparison of both indices was not significant for the clinical isolates of Candida. A significant reduction in phagocytic activity was observed for clinical isolates of Candida spp. However, lytic activity was variable compared to the standard strain of C. albicans.

Downloads

Download data is not yet available.

References

Calderone RA, Clancy CJ (Eds.). Candida and Candidiasis, (2nd Edition), ASM Press; 2012, DC10.1128/9781555817176. DOI: https://doi.org/10.1128/9781555817176

de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes MDS, Filho AKDB, do Nascimento FRF, Ramos RM, Pires ERRB, de Andrade MS, Rocha FMG, de Andrade Monteiro C. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front Microbiol. 2018 Jul 3;9:1351. doi: 10.3389/fmicb.2018.01351. PMID: 30018595; PMCID: PMC6038711. DOI: https://doi.org/10.3389/fmicb.2018.01351

Rudkin FM, Bain JM, Walls C, Lewis LE, Gow NAR, Erwig LP. 2013. Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present. mBio 4(6):e00810-13. doi:10.1128/mBio.00810-13. DOI: https://doi.org/10.1128/mBio.00810-13

Coleman DC, Bennett DE, Sullivan DJ, Gallagher PJ, Henman MC, Shanley DB, Russell RJ. Oral Candida in HIV infection and AIDS: new perspectives/new approaches. Crit Rev Microbiol. 1993;19(2):61-82. doi: 10.3109/10408419309113523. PMID: 8338619. DOI: https://doi.org/10.3109/10408419309113523

Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004 Aug 1;39(3):309-17. doi: 10.1086/421946. Epub 2004 Jul 15. Erratum in: Clin Infect Dis. 2004 Oct 1;39(7):1093. Erratum in: Clin Infect Dis. 2005 Apr 1;40(7):1077. PMID: 15306996. DOI: https://doi.org/10.1086/421946

Deorukhkar SC, Saini S, Mathew S. Non-albicans Candida Infection: An Emerging Threat. Interdiscip Perspect Infect Dis. 2014;2014:615958. doi: 10.1155/2014/615958. Epub 2014 Oct 22. PMID: 25404942; PMCID: PMC4227454 DOI: https://doi.org/10.1155/2014/615958

Netea MG, Maródi L. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol. 2010 Sep;31(9):346-53. doi: 10.1016/j.it.2010.06.007. Epub 2010 Aug 11. PMID: 20705510. DOI: https://doi.org/10.1016/j.it.2010.06.007

van der Meer JW, van de Veerdonk FL, Joosten LA, Kullberg BJ, Netea MG. Severe Candida spp. infections: new insights into natural immunity. Int J Antimicrob Agents. 2010 Dec;36 Suppl 2:S58-62. doi: 10.1016/j.ijantimicag.2010.11.013. Epub 2010 Dec 3. PMID: 21129931. DOI: https://doi.org/10.1016/j.ijantimicag.2010.11.013

Duggan S, Leonhardt I, Hünniger K, Kurzai O. Host response to Candida albicans bloodstream infection and sepsis. Virulence. 2015;6(4):316-26. doi: 10.4161/21505594.2014.988096. Epub 2015 Mar 18. PMID: 25785541; PMCID: PMC4601378.

Shanmugam L, Ravinder SS, Johnson P, Padmavathi R, Rajagopalan B, Kindo AJ. Assessment of phagocytic activity of neutrophils in chronic obstructive pulmonary disease. Lung India. 2015 Sep-Oct;32(5):437-40. doi: 10.4103/0970-2113.164159. PMID: 26628755; PMCID: PMC4586995. DOI: https://doi.org/10.4103/0970-2113.164159

M44 - Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, 3rd Edition. Clinical and Laboratory Standards Institute

Vazquez JA, Sobel JD. Mucosal candidiasis. Infect Dis Clin North Am. 2002 Dec;16(4):793-820, v. doi: 10.1016/s0891-5520(02)00042-9. PMID: 12512182. DOI: https://doi.org/10.1016/S0891-5520(02)00042-9

Lionakis MS. New insights into innate immune control of systemic candidiasis. Med Mycol. 2014 Aug;52(6):555-64. doi: 10.1093/mmy/myu029. Epub 2014 Jul 14. PMID: 25023483; PMCID: PMC4823972. DOI: https://doi.org/10.1093/mmy/myu029

Ashman RB, Papadimitriou JM. Production and function of cytokines in natural and acquired immunity to Candida albicans infection. Microbiological Reviews. 1995 Dec;59(4):646-672. DOI: 10.1128/mr.59.4.646-672.1995. PMID: 8531890; PMCID: PMC239393. DOI: https://doi.org/10.1128/MMBR.59.4.646-672.1995

Jensen J, Warner T, Balish E. The role of phagocytic cells in resistance to disseminated candidiasis in granulocytopenic mice. J Infect Dis. 1994 Oct;170(4):900-5. doi: 10.1093/infdis/170.4.900. PMID: 7930734. DOI: https://doi.org/10.1093/infdis/170.4.900

LEHRER, R. I &CLINE, M.J. (1969). Interaction of Candida albicans with human leucocyte and serum.journal of bacteriology,98,996-1004. doi: 10.1128/jb.98.3.996-1004.1969 DOI: https://doi.org/10.1128/jb.98.3.996-1004.1969

Moran, G.P.; Sullivan, D.J.; Coleman, D.C. Emergence of non-Candida albicans Candida species as pathogens. In Candida and Candidiasis; Calderone, R.A., Ed.; ASM Press: Washinton, DC, USA, 2002; pp. 37–54.

Priest SJ, Lorenz MC. Characterization of Virulence-Related Phenotypes in Candida Species of the CUG Clade. Eukaryot Cell. 2015 Sep;14(9):931-40. doi: 10.1128/EC.00062-15. Epub 2015 Jul 6. PMID: 26150417; PMCID: PMC4551586. DOI: https://doi.org/10.1128/EC.00062-15

Campbell DE, Douglas SD. Phagocytic cell functions. I. Oxidation and chemotaxis. In: Rose NR, de Macario EC, Folds JD, Lane HC, Nakamura RM (eds) Manual of Clinical Laboratory Immunology, 5th edition American Society for Microbiology, Washington, p. 320-328, 1997.

Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol. 2002;20:825-52. doi: 10.1146/annurev.immunol.20.103001.114744. Epub 2001 Dec 7. PMID: 11861619. DOI: https://doi.org/10.1146/annurev.immunol.20.103001.114744

Kuriyama T, Williams DW, Bagg J, Coulter WA, Ready D, Lewis MA. In vitro susceptibility of oral Candida to seven antifungal agents. Oral Microbiol Immunol. 2005 Dec;20(6):349-53. doi: 10.1111/j.1399-302X.2005.00236.x. PMID: 16238594. DOI: https://doi.org/10.1111/j.1399-302X.2005.00236.x

Nihal Bandara, Lakshman Samaranayake, Emerging and future strategies in the management of recalcitrant Candida auris, Medical Mycology, Volume 60, Issue 4, April 2022, myac008, https://doi.org/10.1093/mmy/myac008 DOI: https://doi.org/10.1093/mmy/myac008

Pfaller MA, Messer SA, Deshpande LM, Rhomberg PR, Utt EA, Castanheira M. Evaluation of Synergistic Activity of Isavuconazole or Voriconazole plus Anidulafungin and the Occurrence and Genetic Characterization of Candida auris Detected in a Surveillance Program. Antimicrob Agents Chemother. 2021 Mar 18;65(4):e02031-20. doi: 10.1128/AAC.02031-20. PMID: 33431416; PMCID: PMC8097481. DOI: https://doi.org/10.1128/AAC.02031-20

Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin Infect Dis. 2017 Jan 15;64(2):134-140. doi: 10.1093/cid/ciw691. Epub 2016 Oct 20. Erratum in: Clin Infect Dis. 2018 Aug 31;67(6):987. PMID: 27988485; PMCID: PMC5215215. DOI: https://doi.org/10.1093/cid/ciw691

Downloads

Published

2024-02-01

Issue

Section

Original Papers

How to Cite

1.
Sreelakshmi P, Harish KK, Kuruvilla J, Theckel PG. Estimation of Phagocytic Activity by Normal Human Peripheral Blood Mononuclear Cells on Various Oral Isolates of Candida Species: an in-vitro Study. JMS [Internet]. 2024 Feb. 1 [cited 2024 Jul. 19];93(2):e953. Available from: https://jms.ump.edu.pl/index.php/JMS/article/view/953
Received 2023-11-23
Accepted 2024-01-31
Published 2024-02-01