Plants: past and present in the battle against diabetes




diabetes, plants, prediabetic, anti-diabetic, metabolic disease, phytochemicals


From ancient times, when medicine was based on folk knowledge, to the present era of advanced science, the beneficial effects of plants on various diseases, including diabetes, have been discovered. Approximately 537 million people worldwide have diabetes, and forecasts indicate further increases. Hence, there is a need to develop new effective therapies and interventions to support diabetes treatment. Many plants impact carbohydrate metabolism, and the amount of in vitro and in vivo research on animals and humans continues to grow, updating our knowledge about their potential applications in diabetes treatment and its complications. This review discusses six plant sources with proven anti-diabetic activity. The study serves as a literature review on plants and their derived compounds that exhibit hypoglycemic effects, which are significant in managing prediabetic conditions and diagnosed diabetes.


Download data is not yet available.


Chan CH, Ngoh GC, Yusoff R. A brief review on anti diabetic plants: Global distribution, active ingredients, extraction techniques and acting mechanisms. Pharmacogn Rev. 2012 Jan;6(11):22-8. doi: 10.4103/0973-7847.95854. PMID: 22654401; PMCID: PMC3358964. DOI:

Facts & figures - International Diabetes Federation Available online: (accessed on Jul 8, 2023).

Surjushe, A.; Vasani, R.; Saple, D. ALOE VERA: A SHORT REVIEW. Indian J. Dermatol. 2008, 53, 163, doi:10.4103/0019-5154.44785. DOI:

Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules. 2020;25(6). doi:10.3390/MOLECULES25061324 DOI:

Noor A, Gunasekaran S, Vijayalakshmi MA. Improvement of Insulin Secretion and Pancreatic β-cell Function in Streptozotocin-induced Diabetic Rats Treated with Aloe vera Extract. Pharmacognosy Res. 2017;9(Suppl 1):S99-S104. doi:10.4103/PR.PR_75_17 DOI:

Kim K., Kim H., Kwon J., Lee S., Kong H., Im S.A., Lee Y.H., Lee Y.R., Oh S.T., Jo T.H., et al. Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of non-insulin-dependent diabetes mellitus. Phytomedicine. 2009;16:856–863. doi: 10.1016/j.phymed.2009.02.014. DOI:

Beppu H., Shimpo K., Chihara T., Kaneko T., Tamai I., Yamaji S., Ozaki S., Kuzuya H., Sonoda S. Antidiabetic effects of dietary administration of Aloe arborescens Miller components on multiple low-dose streptozotocin-induced diabetes in mice: Investigation on hypoglycemic action and systemic absorption dynamics of aloe components. J. Ethnopharmacol. 2006;103:468–477. doi: 10.1016/j.jep.2005.10.034. DOI:

Shin E., Shin S., Kong H., Lee S., Do S.G., Jo T.H., Park Y.I., Lee C.K., Hwang I.K., Kim K. Dietary Aloe Reduces Adipogenesis via the Activation of AMPK and Suppresses Obesity-related Inflammation in Obese Mice. Immune Netw. 2011;11:107–113. doi: 10.4110/in.2011.11.2.107. DOI:

Devaraj S, Yimam M, Brownell LA, Jialal I, Singh S, Jia Q. Effects of Aloe vera supplementation in subjects with prediabetes/metabolic syndrome. MetabSyndrRelatDisord. 2013;11(1):35-40. doi:10.1089/MET.2012.0066 DOI:

Choi HC, Kim SJ, Son KY, Oh BJ, Cho BL. Metabolic effects of aloe vera gel complex in obese prediabetes and early non-treated diabetic patients: randomized controlled trial. Nutrition. 2013;29(9):1110-1114. doi:10.1016/J.NUT.2013.02.015 DOI:

Huseini HF, Kianbakht S, Hajiaghaee R, Dabaghian FH. Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Planta Med. 2012;78(4):311-316. doi:10.1055/S-0031-1280474 DOI:

Alinejad-Mofrad S, Foadoddini M, Saadatjoo SA, Shayesteh M. Improvement of glucose and lipid profile status with Aloe vera in pre-diabetic subjects: a randomized controlled-trial. J Diabetes MetabDisord. 2015;14(1). doi:10.1186/S40200-015-0137-2 DOI:

Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, doi:10.3390/IJMS21051744. DOI:

Medagama AB. The glycaemic outcomes of Cinnamon, a review of the experimental evidence and clinical trials. Nutr J. 2015;14(1). doi:10.1186/S12937-015-0098-9 DOI:

Qin B, Dawson HD, Schoene NW, Polansky MM, Anderson RA. Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes. Nutrition. 2012;28(11-12):1172-1179. doi:10.1016/J.NUT.2012.03.020 DOI:

Shen Y, Fukushima M, Ito Y, et al. Verification of the antidiabetic effects of cinnamon (Cinnamomumzeylanicum) using insulin-uncontrolled type 1 diabetic rats and cultured adipocytes. BiosciBiotechnolBiochem. 2010;74(12):2418-2425. doi:10.1271/BBB.100453 DOI:

Anand P, Murali KY, Tandon V, Murthy PS, Chandra R. Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. ChemBiol Interact. 2010;186(1):72-81. doi:10.1016/J.CBI.2010.03.044 DOI:

Cheng DM, Kuhn P, Poulev A, Rojo LE, Lila MA, Raskin I. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix. Food Chem. 2012;135(4):2994-3002. doi:10.1016/J.FOODCHEM.2012.06.117 DOI:

Hayward NJ, McDougall GJ, Farag S, et al. Cinnamon Shows Antidiabetic Properties that Are Species-Specific: Effects on Enzyme Activity Inhibition and Starch Digestion. Plant Foods Hum Nutr. 2019;74(4):544. doi:10.1007/S11130-019-00760-8 DOI:

Zare R, Nadjarzadeh A, Zarshenas MM, Shams M, Heydari M. Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. ClinNutr. 2019;38(2):549-556. doi:10.1016/j.clnu.2018.03.003 DOI:

Akilen R, Tsiami A, Devendra D, Robinson N. Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic Type 2 diabetic patients in the UK: a randomized, placebo-controlled, double-blind clinical trial. Diabet Med. 2010;27(10):1159-1167. doi:10.1111/J.1464-5491.2010.03079.X DOI:

Lira Neto JCG, Damasceno MMC, Ciol MA, et al. Efficacy of Cinnamon as an Adjuvant in Reducing the Glycemic Biomarkers of Type 2 Diabetes Mellitus: A Three-Month, Randomized, Triple-Blind, Placebo-Controlled Clinical Trial. 2021;41(3):266-274. doi:10.1080/07315724.2021.1878967 DOI:

Davari M, Hashemi R, Mirmiran P, et al. Effects of cinnamon supplementation on expression of systemic inflammation factors, NF-kB and Sirtuin-1 (SIRT1) in type 2 diabetes: a randomized, double blind, and controlled clinical trial. Nutr J. 2020;19(1). doi:10.1186/S12937-019-0518-3 DOI:

Mirmiran P, Davari M, Hashemi R, et al. A randomized controlled trial to determining the effect of cinnamon on the plasma levels of soluble forms of vascular adhesion molecules in type 2 diabetes mellitus. Eur J ClinNutr. 2019;73(12):1605-1612. doi:10.1038/S41430-019-0523-9 DOI:

Jia S, Shen M, Zhang F, Xie J. Recent Advances in Momordicacharantia: Functional Components and Biological Activities. Int J Mol Sci. 2017;18(12). doi:10.3390/IJMS18122555 DOI:

Bailey CJ, Day C, Leatherdale BA. Traditional treatments for diabetes from Asia and the West Indies. Pract Diabetes Int. 1986;3(4):190-192. doi:10.1002/PDI.1960030406 DOI:

Hsiao PC, Liaw CC, Hwang SY, et al. Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordicacharantia. J Agric Food Chem. 2013;61(12):2979-2986. doi:10.1021/JF3041116 DOI:

Cheng HL, Huang HK, Chang CI, Tsai CP, Chou CH. A Cell-Based Screening Identifies Compounds from the Stem of Momordicacharantia that Overcome Insulin Resistance and Activate AMP-Activated Protein Kinase. J Agric Food Chem. 2008;56(16):6835-6843. doi:10.1021/JF800801K DOI:

Chen JC, Lau CBS, Chan JYW, et al. The antigluconeogenic activity of cucurbitacins from Momordicacharantia. Planta Med. 2015;81(4):327-332. doi:10.1055/S-0035-1545695 DOI:

Perera WH, Shivanagoudra SR, Pérez JL, et al. Anti-Inflammatory, Antidiabetic Properties and In Silico Modeling of Cucurbitane-Type Triterpene Glycosides from Fruits of an Indian Cultivar of Momordicacharantia L. Molecules. 2021;26(4). doi:10.3390/MOLECULES26041038 DOI:

Shivanagoudra R, Perera WH, Perez JL, et al. Cucurbitane-type compounds from Momordicacharantia: Isolation, in vitro antidiabetic, anti-inflammatory activities and in silico modeling approaches. Bioorg Chem. 2019;87:31-42. doi:10.1016/J.BIOORG.2019.02.040 DOI:

Lee YH, Yoon SY, Baek J, et al. Metabolite Profile of Cucurbitane-Type Triterpenoids of Bitter Melon (Fruit of Momordicacharantia) and Their Inhibitory Activity against Protein Tyrosine Phosphatases Relevant to Insulin Resistance. J Agric Food Chem. 2021;69(6):1816-1830. doi:10.1021/ACS.JAFC.0C06085 DOI:

Liu Y, Mu S, Chen W, et al. Saponins of Momordicacharantia increase insulin secretion in INS-1 pancreatic β-cells via the PI3K/Akt/FoxO1 signaling pathway. Endocrinol diabetes y Nutr. 2021;68(5):329-337. doi:10.1016/J.ENDIEN.2021.08.004 DOI:

Cortez-Navarrete M, Martínez-Abundis E, Pérez-Rubio KG, González-Ortiz M, Méndez-Del Villar M. Momordicacharantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus. J Med Food. 2018;21(7):672-677. doi:10.1089/JMF.2017.0114 DOI:

Kim SK, Jung J, Jung JH, Yoon N, Kang SS, Roh GS, Hahm JR. Hypoglycemic efficacy and safety of Momordicacharantia (bitter melon) in patients with type 2 diabetes mellitus. Complement Ther Med. 2020 Aug;52:102524. doi: 10.1016/j.ctim.2020.102524. Epub 2020 Jul 22. PMID: 32951763. DOI:

Tongia A, Tongia SK, Dave M. Phytochemical determination and extraction of Momordicacharantia fruit and its hypoglycemic potentiation of oral hypoglycemic drugs in diabetes mellitus (NIDDM). Indian J PhysiolPharmacol. 2004 Apr;48(2):241-4. PMID: 15521566.

Fuangchan A, Sonthisombat P, Seubnukarn T, et al. Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J Ethnopharmacol. 2011;134(2):422-428. doi:10.1016/J.JEP.2010.12.045 DOI:

Rahman IU, Khan RU, Rahman KU, Bashir M. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutr J. 2015;14(1). doi:10.1186/1475-2891-14-13 DOI:

Krawinkel MB, Ludwig C, Swai ME, Yang R yu, Chun KP, Habicht SD. Bitter gourd reduces elevated fasting plasma glucose levels in an intervention study among prediabetics in Tanzania. J Ethnopharmacol. 2018;216:1-7. doi:10.1016/J.JEP.2018.01.016 DOI:

Inayat-ur-Rahman, Malik SA, Bashir M, Khan R, Iqbal M. Serum sialic acid changes in non-insulin-dependant diabetes mellitus (NIDDM) patients following bitter melon (Momordicacharantia) and rosiglitazone (Avandia) treatment. Phytomedicine. 2009;16(5):401-405. doi:10.1016/J.PHYMED.2009.01.001 DOI:

Chan, E.W.C.; Lye, P.Y.; Wong, S.K. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Nat. Med. 2016, 14, 17–30, doi:10.3724/SP.J.1009.2016.00017.

Ye F, Shen Z, Xie M. Alpha-glucosidase inhibition from a Chinese medical herb (Ramulusmori) in normal and diabetic rats and mice. Phytomedicine. 2002;9(2):161-166. doi:10.1078/0944-7113-00065 DOI:

Kwon HJ, Chung JY, Kim JY, Kwon O. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: in vivo and in vitro studies. J Agric Food Chem. 2011 Apr 13;59(7):3014-9. doi: 10.1021/jf103463f. Epub 2011 Mar 3. PMID: 21370820. DOI:

Liu Q, Li X, Li C, Zheng Y, Peng G, McPhee DJ. 1-Deoxynojirimycin Alleviates Insulin Resistance via Activation of Insulin Signaling PI3K/AKT Pathway in Skeletal Muscle of db/db Mice. Molecules. 2015;20(12):21700. doi:10.3390/MOLECULES201219794 DOI:

Liu S nan, Liu Q, Sun S juan, et al. Anti-diabetic effects of the fraction of alkaloids from Ramulus Mori, an innovative Sangzhi alkaloids as an α-glucosidase inhibitor. Acta Pharm Sin. 2019;54(7):1225-1233. doi:10.16438/J.0513-4870.2019-0212

Zhang DY, Wan Y, Hao JY, et al. Evaluation of the alkaloid, polyphenols, and antioxidant contents of various mulberry cultivars from different planting areas in eastern China. Ind Crops Prod. 2018;122:298-307. doi:10.1016/J.INDCROP.2018.05.065 DOI:

Katsube T, Yamasaki M, Shiwaku K, et al. Effect of flavonol glycoside in mulberry (Morus alba L.) leaf on glucose metabolism and oxidative stress in liver in diet-induced obese mice. J Sci Food Agric. 2010;90(14):2386-2392. doi:10.1002/JSFA.4096 DOI:

Józefczuk J, Malikowska K, Glapa A, et al. Mulberry leaf extract decreases digestion and absorption of starch in healthy subjects-A randomized, placebo-controlled, crossover study. Adv Med Sci. 2017;62(2):302-306. doi:10.1016/J.ADVMS.2017.03.002 DOI:

Taghizadeh M, Mohammad Zadeh A, Asemi Z, et al. Morus Alba leaf extract affects metabolic profiles, biomarkers inflammation and oxidative stress in patients with type 2 diabetes mellitus: A double-blind clinical trial. ClinNutr ESPEN. 2022;49:68-73. doi:10.1016/J.CLNESP.2022.03.02 DOI:

Qu L, Liang X, Tian G, et al. Efficacy and Safety of Mulberry Twig Alkaloids Tablet for the Treatment of Type 2 Diabetes: A Multicenter, Randomized, Double-Blind, Double-Dummy, and Parallel Controlled Clinical Trial. Diabetes Care. 2021;44(6):1324. doi:10.2337/DC20-2109 DOI:

Qu L, Liang X chun, Tian G qing, et al. Efficacy and Safety of Mulberry Twig Alkaloids Tablet for Treatment of Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Multicenter Clinical Study. Chin J Integr Med. 2022;28(4):304-311. doi:10.1007/S11655-021-2885-9/METRICS DOI:

Thaipitakwong T, Supasyndh O, Rasmi Y, Aramwit P. A randomized controlled study of dose-finding, efficacy, and safety of mulberry leaves on glycemic profiles in obese persons with borderline diabetes. Complement Ther Med. 2020;49. doi:10.1016/J.CTIM.2019.102292 DOI:

Kim JY, Ok HM, Kim J, Park SW, Kwon SW, Kwon O. Mulberry leaf extract improves postprandial glucose response in prediabetic subjects: a randomized, double-blind placebo-controlled trial. J Med Food. 2015;18(3):306-313. doi:10.1089/JMF.2014.3160 DOI:

Takahashi M, Mineshita Y, Yamagami J, et al. Effects of the timing of acute mulberry leaf extract intake on postprandial glucose metabolism in healthy adults: a randomised, placebo-controlled, double-blind study. Eur J ClinNutr. 2023;77(4). doi:10.1038/S41430-023-01259-X DOI:

Yadav, U. C. S., &Baquer, N. Z. (2013). Pharmacological effects ofTrigonellafoenum-graecumL. in health and disease. Pharmaceutical Biology, 52(2), 243–254. doi:10.3109/13880209.2013.826247 DOI:

Fuller S, Stephens JM. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: mechanisms of actions and potential effects on metabolic syndrome. AdvNutr. 2015 Mar 13;6(2):189-97. doi: 10.3945/an.114.007807. PMID: 25770257; PMCID: DOI:

Broca C, Breil V, Cruciani-Guglielmacci C, Manteghetti M, Rouault C, Derouet M, Rizkalla S, Pau B, Petit P, Ribes G, Ktorza A, Gross R, Reach G, Taouis M. Insulinotropic agent ID-1101 (4-hydroxyisoleucine) activates insulin signaling in rat. Am J PhysiolEndocrinolMetab. 2004 Sep;287(3):E463-71. doi: 10.1152/ajpendo.00163.2003. Epub 2004 Apr 13. PMID: 15082420. DOI:

Hannan JMA, Ali L, Rokeya B, et al.: Soluble dietary fibre fraction of Trigonellafoenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type2 diabetes by delaying carbohydrate digestion and absorption,and enhancing insulin action. Br J Nutr 2007;97:514–521. DOI:

Vijayakumar MV, Singh S, Chhipa RR, Bhat MK. The hypoglycaemic activity of fenugreek seed extract is mediated through the stimulation of an insulin signalling pathway. Br J Pharmacol. 2005;146(1):41-48. doi:10.1038/SJ.BJP.0706312 DOI:

Mohammad S, Taha A, Akhtar K, Bamezai RNK, Baquer NZ. In vivo effect of Trigonellafoenumgraecum on the expression of pyruvate kinase, phosphoenolpyruvate carboxykinase, and distribution of glucose transporter (GLUT4) in alloxan-diabetic rats. Can J PhysiolPharmacol. 2006;84(6):647-654. doi:10.1139/Y05-164 DOI:

Geberemeskel GA, Debebe YG, Nguse NA. Antidiabetic Effect of Fenugreek Seed Powder Solution ( Trigonellafoenum-graecum L.) on Hyperlipidemia in Diabetic Patients. J Diabetes Res. 2019;2019. doi:10.1155/2019/8507453 DOI:

Gupta A, Gupta R, Lal B. Effect of Trigonellafoenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: a double blind placebo controlled study. J Assoc Physicians India. 2001 Nov;49:1057-61. PMID: 11868855.

Verma N, Usman K, Patel N, Jain A, Dhakre S, Swaroop A, Bagchi M, Kumar P, Preuss HG, Bagchi D. A multicenter clinical study to determine the efficacy of a novel fenugreek seed (Trigonellafoenum-graecum) extract (Fenfuro™) in patients with type 2 diabetes. Food Nutr Res. 2016 Oct 11;60:32382. doi: 10.3402/fnr.v60.32382. PMID: 27733237; PMCID: PMC5061863. DOI:

Hadi A, Arab A, Hajianfar H, et al. The effect of fenugreek seed supplementation on serum irisin levels, blood pressure, and liver and kidney function in patients with type 2 diabetes mellitus: A parallel randomized clinical trial. Complement Ther Med. 2020;49. doi:10.1016/J.CTIM.2020.102315 DOI:

Losso JN, Holliday DL, Finley JW, Martin RJ, Rood JC, Yu Y, Greenway FL. Fenugreek bread: a treatment for diabetes mellitus. J Med Food. 2009 Oct;12(5):1046-9. doi: 10.1089/jmf.2008.0199. PMID: 19857068. DOI:

Kiyama, R. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. J. Nutr. Biochem. 2020, 86, 108486, doi:10.1016/J.JNUTBIO.2020.108486. DOI:

Wang, J.; Ke, W.; Bao, R.; Hu, X.; Chen, F. Beneficial effects of ginger Zingiberofficinale Roscoe on obesity and metabolic syndrome: a review. Ann. N. Y. Acad. Sci. 2017, 1398, 83–98, doi:10.1111/NYAS.13375. DOI:

Samad MB, Mohsin MNAB, Razu BA, Hossain MT, Mahzabeen S, Unnoor N, Muna IA, Akhter F, Kabir AU, Hannan JMA. [6]-Gingerol, from Zingiberofficinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC Complement Altern Med. 2017 Aug 9;17(1):395. doi: 10.1186/s12906-017-1903-0. PMID: 28793909; PMCID: PMC5550996. DOI:

Elshater AEA, Salman MMA, Moussa MMA. Effect of Ginger Extract Consumption on levels of blood Glucose, Lipid Profile and Kidney Functions in Alloxan Induced-Diabetic Rats. Egypt Acad J Biol Sci. 2009;2(1):153-162. Accessed July 6, 2023. DOI:

Akhani SP, Vishwakarma SL, Goyal RK. Anti-diabetic activity of Zingiberofficinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol. 2004 Jan;56(1):101-5. doi: 10.1211/0022357022403. PMID: 14980006. DOI:

Abdulrazaq NB, Cho MM, Win NN, Zaman R, Rahman MT. Beneficial effects of ginger (Zingiberofficinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br J Nutr. 2012 Oct;108(7):1194-201. doi: 10.1017/S0007114511006635. Epub 2011 Dec 12. PMID: 22152092. DOI:

Rani MP, Krishna MS, Padmakumari KP, Raghu KG, Sundaresan A. Zingiberofficinale extract exhibits antidiabetic potential via modulating glucose uptake, protein glycation and inhibiting adipocyte differentiation: an in vitro study. J Sci Food Agric. 2012 Jul;92(9):1948-55. doi: 10.1002/jsfa.5567. Epub 2012 Jan 20. PMID: 22261727. DOI:

Al Hroob AM, Abukhalil MH, Alghonmeen RD, Mahmoud AM. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy. Biomed Pharmacother. 2018 Oct;106:381-389. doi: 10.1016/j.biopha.2018.06.148. Epub 2018 Jul 11. PMID: 29966984. DOI:

Carvalho GCN, Lira-Neto JCG, Araújo MFM, Freitas RWJF, Zanetti ML, Damasceno MMC. Effectiveness of ginger in reducing metabolic levels in people with diabetes: a randomized clinical trial. Rev Lat Am Enfermagem. 2020 Oct 9;28:e3369. doi: 10.1590/1518-8345.3870.3369. PMID: 33053078; PMCID: PMC7546607. DOI:

El Gayar MH, Aboromia MMM, Ibrahim NA, Abdel Hafiz MH. Effects of ginger powder supplementation on glycemic status and lipid profile in newly diagnosed obese patients with type 2 diabetes mellitus. Obes Med. 2019;14:100094. doi:10.1016/J.OBMED.2019.100094 DOI:

Mahluji S, Attari VE, Mobasseri M, Payahoo L, Ostadrahimi A, Golzari SE. Effects of ginger (Zingiberofficinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int J Food SciNutr. 2013 Sep;64(6):682-6. doi: 10.3109/09637486.2013.775223. Epub 2013 Mar 18. PMID: 23496212. DOI:

Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S. The effect of ginger (Zingiberofficinale) on glycemic markers in patients with type 2 diabetes. J Complement Integr Med. 2015 Jun;12(2):165-70. doi: 10.1515/jcim-2014-0021. PMID: 25719344. DOI:

Arablou T, Aryaeian N, Valizadeh M, Sharifi F, Hosseini A, Djalali M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int J Food SciNutr. 2014 Jun;65(4):515-20. doi: 10.3109/09637486.2014.880671. Epub 2014 Feb 4. PMID: 24490949. DOI:

Mozaffari-Khosravi H, Talaei B, Jalali BA, Najarzadeh A, Mozayan MR. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Complement Ther Med. 2014 Feb;22(1):9-16. doi: 10.1016/j.ctim.2013.12.017. Epub 2014 Jan 8. PMID: 24559810. DOI:

Rostamkhani H, Veisi P, Niknafs B, Jafarabadi MA, Ghoreishi Z. The effect of zingiberofficinale on prooxidant-antioxidant balance and glycemic control in diabetic patients with ESRD undergoing hemodialysis: a double-blind randomized control trial. BMC Complement Med Ther. 2023 Feb 17;23(1):52. doi: 10.1186/s12906-023-03874-4. PMID: 36800950; PMCID: PMC9936709. DOI:

Yimam, M.; Zhao, J.; Corneliusen, B.; Pantier, M.; Brownell, L.A.; Jia, Q. UP780, a chromone-enriched aloe composition improves insulin sensitivity. Metab. Syndr. Relat. Disord. 2013, 11, 267–275, doi:10.1089/MET.2012.0135. DOI:




How to Cite

Balewska A, Szczechla M. Plants: past and present in the battle against diabetes. JMS [Internet]. 2023 Sep. 26 [cited 2023 Dec. 11];:e896. Available from:



Review Papers
Received 2023-07-25
Accepted 2023-09-05
Published 2023-09-26