Molecular docking and admet properties of Anacardium occidentale methanolic nut extract against inflammatory, oxidative and apoptotic markers of diabetes

Authors

  • Folasade Omobolanle Ajao Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo-state, Nigeria https://orcid.org/0000-0001-8839-4689
  • Marcus Olaoye Iyedupe Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo-state, Nigeria https://orcid.org/0000-0003-0992-6857
  • Oluwatosin Akanmu Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo-state, Nigeria
  • Raphael Oneosinina Adegbola Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo-state, Nigeria
  • Noheem Olaolu Kalejaiye Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo-state, Nigeria
  • Temitope Isaac Adelusi Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo-state, Nigeria

DOI:

https://doi.org/10.20883/medical.e885

Keywords:

diabetes mellitus, anacardium occidentale nut, molecular docking, drug likeness, ADMET properties

Abstract

Background. The contemporary antidiabetic drugs have side effects and adverse reactions. This demand to search for less toxic and effective treatments for diabetes from medicinal plants using computational methods. The present research investigated the molecular docking of Anacardium occidentale nut methanolic extract compounds with selected proteins related to diabetes and the compounds’ AMDET properties.

Material and Methods. The compounds were identified using Gas chromatography-mass spectrometry analysis. The compounds'2-dimensional structure was retrieved from the PubChem compound database. Three-dimensional crystallographic structure of selected proteins; B-cell-lymphoma-2 (Bcl-2), caspase-3, glucocorticoids, interleukin-1β, myeloperoxidase and tumor necrosis factor-alpha (TNF-α) was downloaded from Protein Data Bank. Molecular docking was performed using Autodoc kvina and the active site of binding interactions was detected with the Computed Atlas of Surface Topography of proteins (CAST-P). The compounds' drug-likeness, physicochemical and ADMET were evaluated using molininspiration and admetSAR online tools.

Results. Ten compounds were identified from the Anacardium occidentale nut methanolic extract. All the compounds exhibited drug-likeness properties with violation of one Lipinski’s rule. Two compounds, oleic acid and 3-(p-methoxyphenyl)-propionic acid exhibited the best binding energy with the active receptors site of Bcl-2, caspase-3, TNF-α and glucocorticoid. Also, tridecanoic acid exhibited good binding energy with the active site of glucocorticoid receptors. Only 3-(p-methoxyphenyl)-propionic acid exhibited moderate binding energy with the active receptors site of interleukin-1β and myeloperoxidase. All the compounds displayed excellent ADMET properties.

Conclusions. Antidiabetic drugs with the least side effects could be explored from these compounds.

Downloads

Download data is not yet available.

References

Ashraf SA, Elkhalifa AEO, Siddiqui AJ, Patel M, Awadelkareem AM, Snoussi M, Ashraf MS, Adnan M, Hadi S. Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Cordyceps Medicinal Fungus and Its Nutraceutical and Therapeutic Potential. Molecules. 2020 Jun 12;25(12):2735. doi: 10.3390/molecules25122735.

Unnikrishnan R, Misra A. Infections and diabetes: Risks and mitigation with reference to India. Diabetes Metab Syndr. 2020 Nov-Dec;14(6):1889-1894. doi: 10.1016/j.dsx.2020.09.022.

Bonnefont-Rousselot D, Bastard JP, Jaudon MC, Delattre J. Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab. 2000 May;26(3):163-76. PMID: 10880889.

Elkhalifa AEO, Al-Shammari E, Adnan M, Alcantara JC, Mehmood K, Eltoum NE, Awadelkareem AM, Khan MA, Ashraf SA. Development and Characterization of Novel Biopolymer Derived from Abelmoschus esculentus L. Extract and Its Antidiabetic Potential. Molecules. 2021;26(12):3609. doi: 10.3390/molecules26123609.

Boutennoun H, Boussouf L, Kebieche M, Al-Qaoud K, Madani K. In vivo analgesic, anti-inflammatory and antioxidant potentials of Achilleaodorata from north Algeria. S. Afr. J. Bot. 2017;112:307–313. doi: 10.1016/j.sajb.2017.06.004.

Silva RA, Liberio S, Amaral FM, Nascimento FRF, Torres LM, Monteiro-Neto V, Guerra RNM. Antimicrobial and antioxidant activity of Anacardium occidentale L. flowers in comparison to bark and leaves extracts. J. Biosci. Med. 2016;4:87–99. doi: 10.4236/jbm.2016.44012.

Siracusa R, Fusco R, Peritore AF, Cordaro M, D'Amico R, Genovese T, Gugliandolo E, Crupi R, Smeriglio A, Mandalari G, Cuzzocrea S, Di Paola R, Impellizzeri D. The Antioxidant and Anti-Inflammatory Properties of Anacardium occidentale L. Cashew Nuts in a Mouse Model of Colitis. Nutrients. 2020 Mar 20;12(3):834. doi: 10.3390/nu12030834.

Agila A, Barringer SA. Volatile profile of cashews (Anacardium occidentale L.) from different geographical origins during roasting. J Food Sci. 2011 Jun-Jul;76(5):C768-74. doi: 10.1111/j.1750-3841.2011.02180.x.

de Melo MFFT, Pereira DE, Sousa MM, Medeiros DMF, Lemos LTM, Madruga MS, Santos NM, de Oliveira MEG, de Menezes CC, Soares JKB. Maternal intake of cashew nuts accelerates reflex maturation and facilitates memory in the offspring. Int J Dev Neurosci. 2017 Oct;61:58-67. doi: 10.1016/j.ijdevneu.2017.06.006.

Baptista A, Gonçalves RV, Bressan J, Pelúzio MDCG. Antioxidant and Antimicrobial Activities of Crude Extracts and Fractions of Cashew (Anacardium occidentale L.), Cajui (Anacardium microcarpum), and Pequi (Caryocar brasiliense C.): A Systematic Review. Oxid Med Cell Longev. 2018 Apr 18;2018:3753562. doi: 10.1155/2018/3753562.

Alexiadou K, Katsilambros N. Nuts: anti-atherogenic food? Eur J Intern Med. 2011 Apr;22(2):141-6. doi: 10.1016/j.ejim.2010.11.008.

Gómez-Caravaca AM, Verardo V, Caboni MF. Chromatographic techniques for the determination of alkyl-phenols, tocopherols and other minor polar compounds in raw and roasted cold pressed cashew nut oils. J Chromatogr A. 2010 Nov 19;1217(47):7411-7. doi: 10.1016/j.chroma.2010.09.054.

Liu CM, Peng Q, Zhong JZ, Liu W, Zhong YJ, Wang F. Molecular and Functional Properties of Protein Fractions and Isolate from Cashew Nut (Anacardium occidentale L.). Molecules. 2018 Feb 12;23(2):393. doi: 10.3390/molecules23020393.

Alberto AVP, da Silva Ferreira NC, Soares RF, Alves LA. Molecular Modeling Applied to the Discovery of New Lead Compounds for P2 Receptors Based on Natural Sources. Front Pharmacol. 2020 Sep 29;11:01221. doi: 10.3389/fphar.2020.01221.

Ralte L, Khiangte L, Thangjam NM, Kumar A, Singh YT. GC-MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Sci Rep. 2022 Mar 1;12(1):3395. doi: 10.1038/s41598-022-07320-2.

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021 Jan 8;49(D1):D1388-D1395. doi: 10.1093/nar/gkaa971.

Khanal P, Patil BM, Chand J, Naaz Y. Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19. Nat Prod Bioprospect. 2020 Oct;10(5):325-335. doi: 10.1007/s13659-020-00260-2.

Schrödinger Release 2020–2: Prime, Schrödinger, LLC, New York, NY, (2020).

Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004 Dec;1(4):337-41. doi: 10.1016/j.ddtec.2004.11.007.

Li WL, Zheng HC, Bukuru J, De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol. 2004 May;92(1):1-21. doi: 10.1016/j.jep.2003.12.031.

Puranik N, Kammar KF, Devi S. Anti-diabetic activity of Tinospora cordifolia (Willd.) in streptozotocin diabetic rats; does it act like sulfonylureas? Turk. J. Med. Sci. 2010;40(2):265–270. doi: 10.3906/sag-0802-40.

Mielech AM, Chen Y, Mesecar AD, Baker SC. Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Res. 2014 Dec 19;194:184-90. doi: 10.1016/j.virusres.2014.01.025.

Rathore PK, Arathy V, Attimarad VS, Kumar P, Roy S. In-silico analysis of gymnemagenin from Gymnema sylvestre (Retz.) R.Br. with targets related to diabetes. J Theor Biol. 2016 Feb 21;391:95-101. doi: 10.1016/j.jtbi.2015.12.004.

Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003 Jan;52(1):102-10. doi: 10.2337/diabetes.52.1.102.

Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994 Jan;124(1-2):1-6. doi: 10.1083/jcb.124.1.1.

Lee SC, Pervaiz S. Apoptosis in the pathophysiology of diabetes mellitus. Int J Biochem Cell Biol. 2007;39(3):497-504. doi: 10.1016/j.biocel.2006.09.007.

Cheng G, Zhu L, Mahato RI. Caspase-3 gene silencing for inhibiting apoptosis in insulinoma cells and human islets. Mol Pharm. 2008 Nov-Dec;5(6):1093-102. doi: 10.1021/mp800093f.

Böhme T, Engel CK, Farjot G, Güssregen S, Haack T, Tschank G, Ritter K. 1,1-Dioxo-5,6-dihydro-[4,1,2]oxathiazines, a novel class of 11ß-HSD1 inhibitors for the treatment of diabetes. Bioorg Med Chem Lett. 2013 Aug 15;23(16):4685-91. doi: 10.1016/j.bmcl.2013.05.102.

Damián-Medina K, Salinas-Moreno Y, Milenkovic D, Figueroa-Yáñez L, Marino-Marmolejo E, Higuera-Ciapara I, Vallejo-Cardona A, Lugo-Cervantes E. In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon. 2020 Mar 27;6(3):e03632. doi: 10.1016/j.heliyon.2020.e03632.

Odegaard JI, Chawla A. Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med. 2012 Mar;2(3):a007724. doi: 10.1101/cshperspect.a007724.

Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb. 2010 Apr 30;17(4):332-41. doi: 10.5551/jat.3939.

Donath MY, Størling J, Berchtold LA, Billestrup N, Mandrup-Poulsen T. Cytokines and beta-cell biology: from concept to clinical translation. Endocr Rev. 2008 May;29(3):334-50. doi: 10.1210/er.2007-0033.

Wiersma JJ, Meuwese MC, van Miert JN, Kastelein A, Tijssen JG, Piek JJ, Trip MD. Diabetes mellitus type 2 is associated with higher levels of myeloperoxidase. Med Sci Monit. 2008 Aug;14(8):CR406-10. PMID: 18667997.

Cohen K, Weizman A, Weinstein A. Positive and Negative Effects of Cannabis and Cannabinoids on Health. Clin Pharmacol Ther. 2019 May;105(5):1139-1147. doi: 10.1002/cpt.1381.

Ferreira LLG, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Discov Today. 2019 May;24(5):1157-1165. doi: 10.1016/j.drudis.2019.03.015.

Fatima S, Gupta P, Sharma S, Sharma A, Agarwal SM. ADMET profiling of geographically diverse phytochemical using chemoinformatic tools. Future Med Chem. 2020 Jan;12(1):69-87. doi: 10.4155/fmc-2019-0206.

Montanari F, Ecker GF. Prediction of drug-ABC-transporter interaction--Recent advances and future challenges. Adv Drug Deliv Rev. 2015 Jun 23;86:17-26. doi: 10.1016/j.addr.2015.03.001.

Testa B, Krämer SD. The biochemistry of drug metabolism--an introduction: part 3. Reactions of hydrolysis and their enzymes. Chem Biodivers. 2007 Sep;4(9):2031-122. doi: 10.1002/cbdv.200790169.

van Waterschoot RA, Schinkel AH. A critical analysis of the interplay between cytochrome p450 3a and pglycoprotein: recent insights from knockout and transgenic mice. Pharmacol. Reviews. 2011;63:390–410

Nisha CM, Kumar A, Nair P, Gupta N, Silakari C, Tripathi T, Kumar A. Molecular Docking and In Silico ADMET Study Reveals Acylguanidine 7a as a Potential Inhibitor of β-Secretase. Adv Bioinformatics. 2016;2016:9258578. doi: 10.1155/2016/9258578.

Tristani-Firouzi M, Chen J, Mitcheson JS, Sanguinetti MC. Molecular biology of K(+) channels and their role in cardiac arrhythmias. Am J Med. 2001 Jan;110(1):50-9. doi: 10.1016/s0002-9343(00)00623-9.

Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006 Mar 23;440(7083):463-9. doi: 10.1038/nature04710.

Downloads

Published

2023-10-03

Issue

Section

Original Papers

How to Cite

1.
Ajao FO, Iyedupe MO, Akanmu O, Adegbola RO, Kalejaiye NO, Adelusi TI. Molecular docking and admet properties of Anacardium occidentale methanolic nut extract against inflammatory, oxidative and apoptotic markers of diabetes. JMS [Internet]. 2023 Oct. 3 [cited 2025 Jan. 26];93(1):e885. Available from: https://jms.ump.edu.pl/index.php/JMS/article/view/885
Received 2023-07-08
Accepted 2023-08-20
Published 2023-10-03