Photodynamic therapy applications – a review


  • Maciej Michalak Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poland
  • Sandra Mazurkiewicz Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poland
  • Jakub Szymczyk Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poland
  • Daniel Ziental Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poland
  • Łukasz Sobotta Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poland



photodynamic therapy, anticancer therapy, photosensitizers


Photodynamic therapy (PDT) is a treatment method gaining worldwide attention. The paper overviews studies on PDT, as it may be applied in many medical disciplines, such as dermatology, urology, gynaecology, the therapy of head and neck cancers, and age-related macular degeneration. Recently, the development of this method has sped up, which is related to the appearance of new photosensitizers and optimised dosimetry of light. Current studies indicate that PDT is a significant support for conventional treatment protocols in many cases.


Download data is not yet available.


Heerfordt IM, Philipsen PA, Wulf HC. Bringing the gentle properties of daylight photodynamic therapy indoors: A systematic review of efficacy and safety. Photodiagnosis Photodyn Ther. 2022;39:102858. doi: 10.1016/j.pdpdt.2022.102858.

Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy—Current Limitations and Novel Approaches. Front Chem. 2021;9:691697. doi: 10.3389/fchem.2021.691697.

Chilakamarthi U, Giribabu L. Photodynamic Therapy: Past, Present and Future. Chem Rec. 2017;17:775–802. doi: 10.1002/tcr.201600121.

Ziental D, Mlynarczyk DT, Czarczynska-Goslinska B, Lewandowski K, Sobotta L. Photosensitizers Mediated Photodynamic Inactivation against Fungi. Nanomaterials. 2021;11:2883. doi: 10.3390/nano11112883.

Tan G, Xu J, Yu Q, Yang Z, Zhang H. The safety and efficiency of photodynamic therapy for the treatment of osteosarcoma: A systematic review of in vitro experiment and animal model reports. Photodiagnosis Photodyn Ther. 2022;40:103093. doi: 10.1016/j.pdpdt.2022.103093.

Borgia F, Giuffrida R, Caradonna E, Vaccaro M, Guarneri F, Cannavò S. Early and Late Onset Side Effects of Photodynamic Therapy. Biomedicines. 2018;6:12. doi: 10.3390/biomedicines6010012.

Kataoka H, Nishie H, Hayashi N, Tanaka M, Nomoto A, Yano S, et al. New photodynamic therapy with next-generation photosensitizers. Ann Transl Med. 2017;5:183–183. doi: 10.21037/atm.2017.03.59.

Mironov AF, Zhdanova KA, Bragina NA. Nanosized vehicles for delivery of photosensitizers in photodynamic diagnosis and therapy of cancer. Russ Chem Rev. 2018;87:859–81. doi: 10.1070/RCR4811.

Ji B, Wei M, Yang B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics. 2022;12:434–58. doi: 10.7150/thno.67300.

Mkhobongo B, Chandran R, Abrahamse H. The Role of Melanoma Cell-Derived Exosomes (MTEX) and Photodynamic Therapy (PDT) within a Tumor Microenvironment. Int J Mol Sci. 2021;22:9726. doi: 10.3390/ijms22189726.

Zhang M, Zhao Y, Ma H, Sun Y, Cao J. How to improve photodynamic therapy-induced antitumor immunity for cancer treatment? Theranostics. 2022;12:4629–55. doi: 10.7150/thno.72465.

Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS Omega. 2022;7:45882–909. doi: 10.1021/acsomega.2c05852.

Wang J, He H, Xu X, Wang X, Chen Y, Yin L. Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials. 2018;171:72–82. doi: 10.1016/j.biomaterials.2018.04.020.

Dabrowski JM, Arnaut LG. Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem Photobiol Sci. 2015;14:1765–80. doi: 10.1039/c5pp00132c.

Yoon I, Li JZ, Shim YK. Advance in Photosensitizers and Light Delivery for Photodynamic Therapy. Clin Endosc. 2013;46:7. doi: 10.5946/ce.2013.46.1.7.

Russo GI, Sholklapper TN, Cocci A, Broggi G, Caltabiano R, Smith AB, et al. Performance of Narrow Band Imaging (NBI) and Photodynamic Diagnosis (PDD) Fluorescence Imaging Compared to White Light Cystoscopy (WLC) in Detecting Non-Muscle Invasive Bladder Cancer: A Systematic Review and Lesion-Level Diagnostic Meta-Analysis. Cancers. 2021;13:4378. doi: 10.3390/cancers13174378.

Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A, et al. Melanoma. The Lancet. 2018;392:971–84. doi: 10.1016/S0140-6736(18)31559-9.

Bindewald-Wittich A, Holz FG, Ach T, Fiorentzis M, Bechrakis NE, Willerding GD. Fundus Autofluorescence Imaging in Patients with Choroidal Melanoma. Cancers. 2022;14:1809. doi: 10.3390/cancers14071809.

Baldea I, Giurgiu L, Teacoe ID, Olteanu DE, Olteanu FC, Clichici S, et al. Photodynamic Therapy in Melanoma - Where do we Stand? Curr Med Chem. 2019;25:5540–63. doi: 10.2174/0929867325666171226115626.

Lee C-H, Lai P-S, Lu Y-P, Chen H-Y, Chai C-Y, Tsai R-K, et al. Real-time vascular imaging and photodynamic therapy efficacy with micelle-nanocarrier delivery of chlorin e6 to the microenvironment of melanoma. J Dermatol Sci. 2015;80:124–32. doi: 10.1016/j.jdermsci.2015.08.005.

Grin MA, Mironov AF. Chemical transformations of bacteriochlorophyll a and its medical applications. Russ Chem Bull. 2016;65:333–49. doi: 10.1007/s11172-016-1307-1.

Krzykawska-Serda M, Dąbrowski JM, Arnaut LG, Szczygieł M, Urbańska K, Stochel G, et al. The role of strong hypoxia in tumors after treatment in the outcome of bacteriochlorin-based photodynamic therapy. Free Radic Biol Med. 2014;73:239–51. doi: 10.1016/j.freeradbiomed.2014.05.003.

Huang L, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M, Hamblin MR. Type I and Type II mechanisms of antimicrobial photodynamic therapy: An in vitro study on gram-negative and gram-positive bacteria. Lasers Surg Med. 2012;44:490–9. doi: 10.1002/lsm.22045.

Hamblin MR, Abrahamse H. Oxygen-Independent Antimicrobial Photoinactivation: Type III Photochemical Mechanism? Antibiot Basel Switz. 2020;9:53. doi: 10.3390/antibiotics9020053.

Pratavieira S, Uliana MP, Dos Santos Lopes NS, Donatoni MC, Linares DR, De Freitas Anibal F, et al. Photodynamic therapy with a new bacteriochlorin derivative: Characterization and in vitro studies. Photodiagnosis Photodyn Ther. 2021;34:102251. doi: 10.1016/j.pdpdt.2021.102251.

Zhu W, Gao Y-H, Liao P-Y, Chen D-Y, Sun N-N, Nguyen Thi PA, et al. Comparison between porphin, chlorin and bacteriochlorin derivatives for photodynamic therapy: Synthesis, photophysical properties, and biological activity. Eur J Med Chem. 2018;160:146–56. doi: 10.1016/j.ejmech.2018.10.005.

Mroz P, Huang Y, Szokalska A, Zhiyentayev T, Janjua S, Nifli A, et al. Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy. FASEB J. 2010;24:3160–70. doi: 10.1096/fj.09-152587.

Pucelik B, Arnaut LG, Stochel G, Dąbrowski JM. Design of Pluronic-Based Formulation for Enhanced Redaporfin-Photodynamic Therapy against Pigmented Melanoma. ACS Appl Mater Interfaces. 2016;8:22039–55. doi: 10.1021/acsami.6b07031.

Tuchayi SM, Makrantonaki E, Ganceviciene R, Dessinioti C, Feldman SR, Zouboulis CC. Acne vulgaris. Nat Rev Dis Primer. 2015;1:15029. doi: 10.1038/nrdp.2015.29.

Ding H-L, Wang X-L, Wang H-W, Huang Z. Successful treatment of refractory facial acne using repeat short-cycle ALA-PDT: Case study. Photodiagnosis Photodyn Ther. 2011;8:343–6. doi: 10.1016/j.pdpdt.2011.07.003.

Thunshelle C, Yin R, Chen Q, Hamblin MR. Current Advances in 5-Aminolevulinic Acid Mediated Photodynamic Therapy. Curr Dermatol Rep. 2016;5:179–90. doi: 10.1007/s13671-016-0154-5.

Wortsman X, Claveria P, Valenzuela F, Molina MT, Wortsman J. Sonography of Acne Vulgaris. J Ultrasound Med. 2014;33:93–102. doi: 10.7863/ultra.33.1.93.

Pietruska M, Sobaniec S, Bernaczyk P, Cholewa M, Pietruski JK, Dolińska E, et al. Clinical evaluation of photodynamic therapy efficacy in the treatment of oral leukoplakia. Photodiagnosis Photodyn Ther. 2014;11:34–40. doi: 10.1016/j.pdpdt.2013.10.003.

Han Y, Xu S, Jin J, Wang X, Liu X, Hua H, et al. Primary Clinical Evaluation of Photodynamic Therapy With Oral Leukoplakia in Chinese Patients. Front Physiol. 2019;9:1911. doi: 10.3389/fphys.2018.01911.

Osuchowski M, Bartusik-Aebisher D, Osuchowski F, Aebisher D. Photodynamic therapy for prostate cancer – A narrative review. Photodiagnosis Photodyn Ther. 2021;33:102158. doi: 10.1016/j.pdpdt.2020.102158.

Pernar CH, Ebot EM, Wilson KM, Mucci LA. The Epidemiology of Prostate Cancer. Cold Spring Harb Perspect Med. 2018;8:a030361. doi: 10.1101/cshperspect.a030361.

Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol. 2017;71:618–29. doi: 10.1016/j.eururo.2016.08.003.

Wang X, Tsui B, Ramamurthy G, Zhang P, Meyers J, Kenney ME, et al. Theranostic Agents for Photodynamic Therapy of Prostate Cancer by Targeting Prostate-Specific Membrane Antigen. Mol Cancer Ther. 2016;15:1834–44. doi: 10.1158/1535-7163.MCT-15-0722.

Azzouzi A-R, Lebdai S, Benzaghou F, Stief C. Vascular-targeted photodynamic therapy with TOOKAD® Soluble in localized prostate cancer: standardization of the procedure. World J Urol. 2015;33:937–44. doi: 10.1007/s00345-015-1535-2.

Azzouzi A-R, Vincendeau S, Barret E, Cicco A, Kleinclauss F, Van Der Poel HG, et al. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol. 2017;18:181–91. doi: 10.1016/S1470-2045(16)30661-1.

Kazantzis KT, Koutsonikoli K, Mavroidi B, Zachariadis M, Alexiou P, Pelecanou M, et al. Curcumin derivatives as photosensitizers in photodynamic therapy: photophysical properties and in vitro studies with prostate cancer cells. Photochem Photobiol Sci. 2020;19:193–206. doi: 10.1039/c9pp00375d.

Mesquita MQ, Ferreira AR, Neves MDGPMS, Ribeiro D, Fardilha M, Faustino MAF. Photodynamic therapy of prostate cancer using porphyrinic formulations. J Photochem Photobiol B. 2021;223:112301. doi: 10.1016/j.jphotobiol.2021.112301.

Jiang Q, Lu S, Xu X, Bai C, Yan Q, Fang M, et al. Inhibition of alanine-serine-cysteine transporter 2-mediated auto-enhanced photodynamic cancer therapy of co-nanoassembly between V-9302 and photosensitizer. J Colloid Interface Sci. 2023;629:773–84. doi: 10.1016/j.jcis.2022.05.044.

Tekin V, Aweda T, Kozgus Guldu O, Biber Muftuler FZ, Bartels J, Lapi SE, et al. A novel anti-angiogenic radio/photo sensitizer for prostate cancer imaging and therapy: 89Zr-Pt@TiO2-SPHINX, synthesis and in vitro evaluation. Nucl Med Biol. 2021;94–95:20–31. doi: 10.1016/j.nucmedbio.2020.12.005.

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics,. 2022. CA Cancer J Clin. 2022;72:7–33. doi: 10.3322/caac.21708.

Powles T, Bellmunt J, Comperat E, De Santis M, Huddart R, Loriot Y, et al. Bladder cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022;33:244–58. doi: 10.1016/j.annonc.2021.11.012.

Przygoda M, Aebisher D. Bladder Cancer and Fluorescence Cystoscopy. IECN. 2022, MDPI;. 2022, p. 4. doi: 10.3390/IECN2022-12402.

Bader MJ, Stepp H, Beyer W, Pongratz T, Sroka R, Kriegmair M, et al. Photodynamic Therapy of Bladder Cancer – A Phase I Study Using Hexaminolevulinate (HAL). Urol Oncol Semin Orig Investig. 2013;31:1178–83. doi: 10.1016/j.urolonc.2012.02.007.

Lin T, Zhao X, Zhao S, Yu H, Cao W, Chen W, et al. O 2 -generating MnO 2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics. 2018;8:990–1004. doi: 10.7150/thno.22465.

Merry GF, Munk MR, Dotson RS, Walker MG, Devenyi RG. Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration. Acta Ophthalmol (Copenh). 2017;95:e270–7. doi: 10.1111/aos.13354.

Nowak JZ. Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration. Pharmacol Rep. 2013;65:288–304. doi: 10.1016/S1734-1140(13)71005-3.

Bressler SB, Qin H, Beck RW, Chalam KV, Kim JE, Melia M, et al. Factors Associated With Changes in Visual Acuity and Central Subfield Thickness at 1 Year After Treatment for Diabetic Macular Edema With Ranibizumab. Arch Ophthalmol. 2012;130:1153–61. doi: 10.1001/archophthalmol.2012.1107.

Bhavsar KV, Freund KB. Retention of good visual acuity in eyes with neovascular age-related macular degeneration and chronic refractory subfoveal subretinal fluid. Saudi J Ophthalmol. 2014;28:129–33. doi: 10.1016/j.sjopt.2014.03.001.

Ehmann D, García R. Triple therapy for neovascular age-related macular degeneration (verteporfin photodynamic therapy, intravitreal dexamethasone, and intravitreal bevacizumab). Can J Ophthalmol. 2010;45:36–40. doi: 10.3129/i09-243.

Mozolewska-Piotrowska K, Krzystolik K, Karczewicz D, Drobek-Słowik M, Kubasik-Kładna K. (41) Zastosowanie terapii łączonej PDT z iniekcjami doszklistkowymi octanu triamcinolonu u pacjentów z wysiękową postacią AMD. Doniesienie wstępne. Klin Oczna. 2011.

Matoba Y, Banno K, Kisu I, Aoki D. Clinical application of photodynamic diagnosis and photodynamic therapy for gynecologic malignant diseases: A review. Photodiagnosis Photodyn Ther. 2018;24:52–7. doi: 10.1016/j.pdpdt.2018.08.014.

Zhang F, Li D, Shi L, Gu Y, Xu Y. 5-ALA-photodynamic therapy in refractory vulvar lichen sclerosus et atrophicus. Int J Clin Exp Pathol. 2020 Dec 1;13(12):3100-3110.

Yordanov A, Tantchev L, Kostov S, Slavchev S, Strashilov S, Vasileva P. Vulvar leukoplakia: therapeutic options. Menopausal Rev. 2020;19:135–9. doi: 10.5114/pm.2020.99570.

Sharova A, Farrakhova D, Slovokhodov E, Arakelov S, Zykov A, Sarantsev A, et al. Evaluation of vulvar leukoplakia photodynamic therapy efficiency by fluorescent diagnostics method with local «Alasens®» photosensitizer application. Photodiagnosis Photodyn Ther. 2019;27:105–10. doi: 10.1016/j.pdpdt.2019.05.018.

Choi MC, Jung SG, Park H, Cho YH, Lee C, Kim SJ. Fertility Preservation via Photodynamic Therapy in Young Patients With Early-Stage Uterine Endometrial Cancer: A Long-term Follow-up Study. Int J Gynecol Cancer. 2013;23:698–704. doi: 10.1097/IGC.0b013e31828b5ba2.

Zastosowanie metod terapii fotodynamicznej w leczeniu zmian przednowotworowych i nowotworowych. n.d. (accessed May 27,. 2023).

Nguyen P, Bashirzadeh F, Hodge R, Agnew J, Farah CS, Duhig E, et al. High specificity of combined narrow band imaging and autofluorescence mucosal assessment of patients with head and neck cancer. Head Neck. 2013;35:619–25. doi: 10.1002/hed.22999.

Szczepkowska A, Milner P, Janas A. Autofluorescence image of post-radiation maxillary bone osteonecrosis in a 64-year-old patient – Case Report. J Pre-Clin Clin Res. 2016;10:69–72. doi: 10.5604/18982395.1208194.

Huang T-T, Huang J-S, Wang Y-Y, Chen K-C, Wong T-Y, Chen Y-C, et al. Novel quantitative analysis of autofluorescence images for oral cancer screening. Oral Oncol. 2017;68:20–6. doi: 10.1016/j.oraloncology.2017.03.003.

Kaneko S, Kaneko S. Fluorescence-Guided Resection of Malignant Glioma with 5-ALA. Int J Biomed Imaging. 2016;2016:1–11. doi: 10.1155/2016/6135293.

Theodoraki M-N, Yerneni S, Gooding WE, Ohr J, Clump DA, Bauman JE, et al. Circulating exosomes measure responses to therapy in head and neck cancer patients treated with cetuximab, ipilimumab, and IMRT. OncoImmunology. 2019;8:e1593805. doi: 10.1080/2162402X.2019.1593805.

Ahn PH, Finlay JC, Gallagher-Colombo SM, Quon H, O’Malley BW, Weinstein GS, et al. Lesion oxygenation associates with clinical outcomes in premalignant and early stage head and neck tumors treated on a phase 1 trial of photodynamic therapy. Photodiagnosis Photodyn Ther. 2018;21:28–35. doi: 10.1016/j.pdpdt.2017.10.015.

Chen Y, Gao Y, Li Y, Wang K, Zhu J. Synergistic chemo-photodynamic therapy mediated by light-activated ROS-degradable nanocarriers. J Mater Chem B. 2019;7:460–8. doi: 10.1039/C8TB03030H.

Ahn PH, Quon H, O’Malley BW, Weinstein G, Chalian A, Malloy K, et al. Toxicities and early outcomes in a phase 1 trial of photodynamic therapy for premalignant and early stage head and neck tumors. Oral Oncol. 2016;55:37–42. doi: 10.1016/j.oraloncology.2016.01.013.

Fukuhara H, Nohara T, Nishimoto K, Hatakeyama Y, Hyodo Y, Okuhara Y, et al. Identification of risk factors associated with oral 5-aminolevulinic acid-induced hypotension in photodynamic diagnosis for non-muscle invasive bladder cancer: a multicenter retrospective study. BMC Cancer. 2021;21:1223. doi: 10.1186/s12885-021-08976-1.

Berlanda J, Kiesslich T, Engelhardt V, Krammer B, Plaetzer K. Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. J Photochem Photobiol B. 2010;100:173–80. doi: 10.1016/j.jphotobiol.2010.06.004.

Shi Y, Li J, Zhang Z, Duan D, Zhang Z, Liu H, et al. Tracing Boron with Fluorescence and Positron Emission Tomography Imaging of Boronated Porphyrin Nanocomplex for Imaging-Guided Boron Neutron Capture Therapy. ACS Appl Mater Interfaces. 2018;10:43387–95. doi: 10.1021/acsami.8b14682.

Al-Raqa SY, Köksoy B, Durmuş M. A novel lutetium(III) acetate phthalocyanine directly substituted with N,N’-dimethylaminophenyl groups via CC bonds and its water-soluble derivative for photodynamic therapy. Tetrahedron Lett. 2017;58:685–9. doi: 10.1016/j.tetlet.2017.01.019.




How to Cite

Michalak M, Mazurkiewicz S, Szymczyk J, Ziental D, Sobotta Łukasz. Photodynamic therapy applications – a review. JMS [Internet]. 2023 Aug. 7 [cited 2024 Jun. 16];92(4):e865. Available from:



Review Papers
Received 2023-06-05
Accepted 2023-08-02
Published 2023-08-07