An overview of medical applications of montmorillonite clay

Authors

  • Jasim Hamadi Hassen Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Iraq https://orcid.org/0000-0002-5250-9891
  • Hamad Kalefa Abdalkadir Department of Chemical and Petrochemical Engineering, College of Engineering, University of Anbar, Iraq https://orcid.org/0000-0003-4645-1248
  • Saher Faiq Abed Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Iraq

DOI:

https://doi.org/10.20883/medical.e826

Keywords:

montmorillonite, swelling, adsorption, drug, agent

Abstract

Clays are among the most important material available in nature. Montmorillonite MMT is an important type of clay mineral whose physical structure is typically perceptible as layers and sheets. Each layer is made up of one octahedral and two tetrahedral structural sheets. Due to its distinctive properties, such as swelling and adsorption, MMT has been used in a variety of industrial and therapeutic applications. The high adsorption capacity of MMT contributes to increasing drug intercalation and then its sustained release. By strongly adhering to the drug, MMT typically maintains drug release in many formulations and speeds up the solubility and bioavailability of hydrophobic drugs. MMT has also been used to develop composite delivery systems that combine it with other polymer-based materials. MMT could therefore be used to develop a variety of drug delivery systems to regulate and enhance a drug's pharmacological qualities, such as solubility, dissolution rate, and absorption. An important note to mention is that clays in general are traditionally considered bio-inert or even biocompatible. In this review, the distinguished applications of MMT clay as an agent in the medical field were discussed. Among those applications is its use as an antibacterial agent, detoxification agent, preventive obesity agent, drug carrier agent, and in the treatment of cancer, diarrhea, wounds, and bones. 

Downloads

Download data is not yet available.

References

Suresh R, Borkar SN, Sawant VA, Shende VS, Dimble SK. Nanoclay drug delivery system. Int J Pharm Sci. Nanotechnol, 2010;3(2):901-5.

Edelman CH, Favejee JL. On the Crystal structure of montmorillonite and halloysite. Z Kristallogr Krist.1940;102(1-6):417-31. doi:10.1524/zkri.1940.102.1.417 DOI: https://doi.org/10.1524/zkri.1940.102.1.417

Uddin F. Montmorillonite: An introduction to properties and utilization. London, IntechOpen, 2018. doi:10.5772/intechopen.77987 DOI: https://doi.org/10.5772/intechopen.77987

Segad M, Jonsson B, Åkesson T, Cabane B. Ca/Na Montmorillonite: Structure, forces and swelling properties. Langmuir. 2010;26(8):5782-90. doi:10.1021/la9036293 DOI: https://doi.org/10.1021/la9036293

Zhu R, Chen Q, Zhou Q, Xi Y, Zhu J, He H. Adsorbents based on montmorillonite for contaminant removal from water: A review. App Clay Sci. 2016;123:239-258. doi:10.1016/j.clay.2015.12.024 DOI: https://doi.org/10.1016/j.clay.2015.12.024

Akpomie KG, Dawodu FA. Acid-modified montmorillonite for sorption of heavy metals from automobile effluent. Beni-Suef univ J Basic Appl Sci. 2016;5(1):1-12. doi:10.1016/j.bjbas.2016.01.003 DOI: https://doi.org/10.1016/j.bjbas.2016.01.003

Tyagi B, Chudasama CD, Jasra RV. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2006;64(2):273-8. https://doi.org/10.1016/j.saa.2005.07.018 DOI: https://doi.org/10.1016/j.saa.2005.07.018

Wu L, Liu J, Liu Y, Huang R, Tang N, Wang X, Hu L. In situ growth of Fe3O4 on montmorillonite surface and its removal of anionic pollutants. RSC Adv. 2021;11(53):33399-407. doi:10.1039/d1ra06318a DOI: https://doi.org/10.1039/D1RA06318A

Yu WH, Zhu B, Tong DS. Deng K, Fu CP, Huang TH, Zhou CH. Tuning the acidity of montmorillonite by H3PO4-activation and supporting WO3 for catalytic dehydration of glycerol to acrolein. Clays Clay Miner. 2022;70:460-79. doi:10.1007/s42860-022-00193-6 DOI: https://doi.org/10.1007/s42860-022-00193-6

Khajeh M, Ghaemi A. Exploiting response surface methodology for experimental modeling and optimization of CO2 adsorption onto NaOH-modified nanoclay montmorillonite. J Environ Chem Engin. 2020;8(2):103663. doi:10.1016/j.jece.2020.103663 DOI: https://doi.org/10.1016/j.jece.2020.103663

Szewczuk-Karpisz K, Bajda T, Tomczyk A, Kuśmierz M, Komaniecka I. Immobilization mechanism of Cd2+/HCrO4-/CrO42- ions and carboxin on montmorillonite modified with Rhizobium leguminosarum bv. trifolii exopolysaccharide. J Hazard Mater. 2022;428(8):128228. doi:10.1016/j.jhazmat.2022.128228 DOI: https://doi.org/10.1016/j.jhazmat.2022.128228

Acisli O, Khataee A, Karaca S, Sheydaei M. Modification of nanosized natural montmorillonite for ultrasound-enhanced adsorption of Acid Red 17. Ultrason Sonochem. 2016;31:116-21. doi:10.1016/j.ultsonch.2015.12.012 DOI: https://doi.org/10.1016/j.ultsonch.2015.12.012

Li P, Zhang H, Xia M, Wang F, Zhu S, Lei W. The synergistic effect and microscopic mechanism of co-adsorption of three emerging contaminants and copper ion on gemini surfactant modified montmorillonite. Ecotoxicol Environ Saf. 2019;184:109610. doi:10.1016/j.ecoenv.2019.109610 DOI: https://doi.org/10.1016/j.ecoenv.2019.109610

Wang L, Wang A. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite. J Hazard Mater. 2008;160(1):173-80. doi:10.1016/j.jhazmat.2008.02.104 DOI: https://doi.org/10.1016/j.jhazmat.2008.02.104

Rathinam K, Atchudan R, Edison TN. Zirconium oxide intercalated sodium montmorillonite scaffold as an effective adsorbent for the elimination of phosphate and hexavalent chromium ions. J Environ Chem Eng. 2021;9(5):106053. doi:10.1016/j.jece.2021.106053 DOI: https://doi.org/10.1016/j.jece.2021.106053

Luo W, Ouyang J, Antwi P, Wu M, Huang Z, Qin W. Microwave/ultrasound-assisted modification of montmorillonite by conventional and gemini alkyl quaternary ammonium salts for adsorption of chromate and phenol: Structure-function relationship. Sci Total Environ. 2019;655:1104-12. doi:10.1016/j.scitotenv.2018.11.329 DOI: https://doi.org/10.1016/j.scitotenv.2018.11.329

Gould IM, Bal AM. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence. 2013;4(2):185-91. doi:10.4161/viru.22507 DOI: https://doi.org/10.4161/viru.22507

Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries. 2014;8(2):129-36. doi:10.3855/jidc.3573 DOI: https://doi.org/10.3855/jidc.3573

Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. 2013;4:47. doi:10.3389/fmicb.2013.00047 DOI: https://doi.org/10.3389/fmicb.2013.00047

Bertagnolli C, Kleinübing SJ, da Silva MGC, Preparation and characterization of a Brazilian bentonite clay for removal of copper in porous beds. Appl Clay Sci. 2011;531:73-9. doi:10.1016/j.clay.2011.05.002 DOI: https://doi.org/10.1016/j.clay.2011.05.002

Bujdakova H, Bujdáková V, Májeková-Koščová H, Gaálová B, Bizovská V, Boháč P. Bujdak J. Antimicrobial activity of organoclays based on quaternary alkylammonium and alkylphosphonium surfactants and montmorillonite. Appl Clay Sci. 2018;158:21-8. doi:10.1016/j.clay.2018.03.010 DOI: https://doi.org/10.1016/j.clay.2018.03.010

Yang S, Ji Y, Deng F, Sun X, Ning C. Co-exchanged montmorillonite: a potential antibacterial agent with good antibacterial activity and cytocompatibility. J Mater Chem B. 2022;10(19):3705-15. doi:10.1039/d2tb00032f DOI: https://doi.org/10.1039/D2TB00032F

Yamamoto Y, Yoshihara K, Nagaoka N, Van Meerbeek B, Yoshida Y. Novel composite cement containing the anti-microbial compound CPC-Montmorillonite. Dent Mater. 2022;38(1):33-43. doi:10.1016/j.dental.2021.10.009 DOI: https://doi.org/10.1016/j.dental.2021.10.009

Matsuo K, Yoshihara K, Nagaoka N, Makita Y, Obika H, Okihara T, Matsukawa A, Yoshida Y, Van Meerbeek B. Rechargeable anti-microbial adhesive formulation containing cetylpyridinium chloride montmorillonite. Acta Biomater. 2019;100:388-97. doi:10.1016/j.actbio.2019.09.045 DOI: https://doi.org/10.1016/j.actbio.2019.09.045

Naoe T, Hasebe A, Horiuchi R, Makita Y, Okazaki Y, Yasuda K, Matsuo K, Yoshida Y, Tsuga K, Abe Y, Yokoyama A. Development of tissue conditioner containing cetylpyridinium chloride montmorillonite as new antimicrobial agent: Pilot study on antimicrobial activity and biocompatibility. J Prosthodont Res. 2020;64(4):436-43. doi:10.1016/j.jpor.2019.12.002 DOI: https://doi.org/10.1016/j.jpor.2019.12.002

Akbar N, Siddiqui R, Khamis M, Ibrahim T, Khan NA. A novel montmorillonite clay-cetylpyridinium chloride complex as a potential antiamoebic composite material in contact lenses disinfection. Exp Parasitol. 2022;240:108330. doi:10.1016/j.exppara.2022.108330 DOI: https://doi.org/10.1016/j.exppara.2022.108330

Roy A, Joshi M, Butola BS, Malhotra S. Antimicrobial and toxicological behavior of montmorillonite immobilized metal nanoparticles. Mater Sci Eng C Mater Biol Appl. 2018;93:704-15. doi:10.1016/j.msec.2018.08.029 DOI: https://doi.org/10.1016/j.msec.2018.08.029

Horue M, Cacicedo ML, Fernandez MA, Rodenak-Kladniew B, Torres Sánchez RM, Castro GR. Antimicrobial activities of bacterial cellulose - Silver montmorillonite nanocomposites for wound healing. Mater Sci Eng C Mater Biol Appl. 2020;116:111152. doi:10.1016/j.msec.2020.111152 DOI: https://doi.org/10.1016/j.msec.2020.111152

Roy A, Joshi M, Butola BS. Antimicrobial performance of polyethylene nanocomposite monofilaments reinforced with metal nanoparticles decorated montmorillonite. Colloids Surf B Biointerfaces. 2019;178:87-93. doi:10.1016/j.colsurfb.2019.02.045 DOI: https://doi.org/10.1016/j.colsurfb.2019.02.045

Tunç S, Duman O, Polat TG. Effects of montmorillonite on properties of methyl cellulose/carvacrol based active antimicrobial nanocomposites. Carbohydr Polym. 2016;150:259-68. doi:10.1016/j.carbpol.2016.05.019 DOI: https://doi.org/10.1016/j.carbpol.2016.05.019

Rapacz-Kmita AR, Pierchała MK, Tomas-Trybuś A, Szaraniec B, Karwot J. The wettability, mechanical and antimicrobial properties of polylactide/montmorillonite nanocomposite films. Acta Bioeng Biomech. 2017;19(4):25-33.

Abdel Aziz MS, Salama HE. Effect of vinyl montmorillonite on the physical, responsive and antimicrobial properties of the optimized polyacrylic acid/chitosan superabsorbent via Box-Behnken model. Int J Biol Macromol. 2018;116:840-8. doi:10.1016/j.ijbiomac.2018.05.081 DOI: https://doi.org/10.1016/j.ijbiomac.2018.05.081

Kimna C, Deger S, Tamburaci S, Tihminlioglu F. Chitosan/montmorillonite composite nanospheres for sustained antibiotic delivery at post-implantation bone infection treatment. Biomed Mater. 2019;14(4):044101. doi:10.1088/1748-605X/ab1a04 DOI: https://doi.org/10.1088/1748-605X/ab1a04

Nouri A, Yaraki MT, Ghorbanpour M, Agarwal S, Gupta VK. Enhanced antibacterial effect of chitosan film using montmorillonite/CuO nanocomposite. Int J Biol Macromol. 2018;109:1219-31. doi:10.1016/j.ijbiomac.2017.11.119 DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.119

Giannakas A, Vlacha M, Salmas C, Leontiou A, Katapodis P, Stamatis H, Barkoula NM, Ladavos A. Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydr Polym. 2016;140:408-15. doi:10.1016/j.carbpol.2015.12.072 DOI: https://doi.org/10.1016/j.carbpol.2015.12.072

Rapacz-Kmita A, Bućko MM, Stodolak-Zych E, Mikołajczyk M, Dudek P, Trybus M. Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):471-8. doi:10.1016/j.msec.2016.09.031 DOI: https://doi.org/10.1016/j.msec.2016.09.031

Wang X, Du Y, Yang J, Tang Y, Luo J. Preparation, characterization, and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites. J Biomed Mater Res A. 2008;84(2):384-90. doi:10.1002/jbm.a.31326 DOI: https://doi.org/10.1002/jbm.a.31326

Hong SI, Rhim JW. Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol. 2008; 8(11):5818-24. doi:10.1166/jnn.2008.248 DOI: https://doi.org/10.1166/jnn.2008.248

Shameli K, Ahmad MB, Zargar M, Yunus WM, Rustaiyan A, Ibrahim NA. Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior. Int J Nanomedicine. 2011;6:581-90. doi:10.2147/IJN.S17112 DOI: https://doi.org/10.2147/IJN.S17112

Lobato-Aguilar HA, Lizama-Uc G, Uribe-Calderon JA, Cauich-Rodriguez J, Rodriguez-Fuentes N, Cervantes-Uc JM. Antibacterial properties and release kinetics of chlorhexidine diacetate from montmorillonite and palygorskite clays. J Biomater Appl. 2020;34(8):1052-8. doi:10.1177/0885328219891710 DOI: https://doi.org/10.1177/0885328219891710

Xu Z, Jiang X, Li Y, Ma X, Tang Y, Li H, Yi K, Li J, Liu Z. Antifungal activity of montmorillonite/peptide aptamer nanocomposite against Colletotrichum gloeosporioides on Stylosanthes. Int J Biol Macromol. 2022; 217:282-90. doi:110.1016/j.ijbiomac.2022.07.034 DOI: https://doi.org/10.1016/j.ijbiomac.2022.07.034

de Oliveira LH, Trigueiro P, Souza JSN, de Carvalho MS, Osajima JA, da Silva-Filho EC, Fonseca MG. Montmorillonite with essential oils as antimicrobial agents, packaging, repellents, and insecticides: an overview. Colloids Surf B Biointerfaces. 2022;209(Pt 2):112186. doi:10.1016/j.colsurfb.2021.112186 DOI: https://doi.org/10.1016/j.colsurfb.2021.112186

Sohrabnezhad Sh, Rassa M, Dahanesari EM. Spectroscopic study of silver halides in montmorillonite and their antibacterial activity. J Photochem Photobiol B. 2016;163:150-5. doi:10.1016/j.jphotobiol.2016.08.018 DOI: https://doi.org/10.1016/j.jphotobiol.2016.08.018

Damato A, Vianello F, Novelli E, Balzan S, Gianesella M, Giaretta E, Gabai G. Comprehensive review on the interactions of clay minerals with animal physiology and production. Front Vet Sci. 2022;9:889612. doi:10.3389/fvets.2022.889612 DOI: https://doi.org/10.3389/fvets.2022.889612

Hearon SE, Wang M, Phillips TD. Strong adsorption of dieldrin by parent and processed montmorillonite clays. Environ Toxicol Chem. 2020;39(3):517-25. doi:10.1002/etc.4642 DOI: https://doi.org/10.1002/etc.4642

Wang M, Safe S, Hearon SE, Phillips TD. Strong adsorption of Polychlorinated Biphenyls by processed montmorillonite clays: Potential applications as toxin enterosorbents during disasters and floods. Environ Pollut. 2019;255(Pt 1):113210. doi:10.1016/j.envpol.2019.113210 DOI: https://doi.org/10.1016/j.envpol.2019.113210

Wang M, Rivenbark KJ, Phillips TD. Adsorption and detoxification of glyphosate and aminomethylphosphonic acid by montmorillonite clays. Environ Sci Pollut Res Int. 2023;30:11417-30. doi:10.1007/s11356-022-22927-8 DOI: https://doi.org/10.1007/s11356-022-22927-8

Zhang Q, Zhang Y, Liu S, Wu Y, Zhou Q, Zhang Y, Zheng X, Han Y, Xie C, Liu N. Adsorption of deoxynivalenol by pillared montmorillonite. Food Chem. 2021;343:128391. doi:10.1016/j.foodchem.2020.128391 DOI: https://doi.org/10.1016/j.foodchem.2020.128391

Wang G, Lian C, Xi Y, Sun Z, Zheng S. Evaluation of nonionic surfactant modified montmorillonite as mycotoxins adsorbent for aflatoxin B1 and zearalenone. J Colloid Interface Sci. 2018;518:48-56. doi:10.1016/j.jcis.2018.02.020 DOI: https://doi.org/10.1016/j.jcis.2018.02.020

Mao J, Zhou Y, Lv G, Zhou R. Simultaneous detoxification of aflatoxin B1, zearalenone and deoxynivalenol by modified montmorillonites. Molecules. 2022;27(1):315. doi:10.3390/molecules27010315 DOI: https://doi.org/10.3390/molecules27010315

van Wijk D, Gyimesi-van den Bos M, Garttener-Arends I, Geurts M, Kamstra J, Thomas P. Bioavailability and detoxification of cationics: I. Algal toxicity of alkyltrimethyl ammonium salts in the presence of suspended sediment and humic acid. Chemosphere. 2009;75(3):303-9. doi:10.1016/j.chemosphere.2008.12.047 DOI: https://doi.org/10.1016/j.chemosphere.2008.12.047

Groisman L, Rav-Acha C, Gerstl Z, Mingelgrin U. Sorption and detoxification of toxic compounds by a bifunctional organoclay. J Environ Qual. 2004;33(5):1930-6. doi:10.2134/jeq2004.1930 DOI: https://doi.org/10.2134/jeq2004.1930

Wang G, Xi Y, Lian C, Sun Z, Zheng S. Simultaneous detoxification of polar aflatoxin B1 and weak polar zearalenone from simulated gastrointestinal tract by zwitterionic montmorillonites. J Hazard Mater. 2019;364:227-37. doi:10.1016/j.jhazmat.2018.09.071 DOI: https://doi.org/10.1016/j.jhazmat.2018.09.071

Hassan AM, Kenawy AM, Abbas WT, Abdel-Wahhab MA. Prevention of cytogenetic, histochemical and biochemical alterations in Oreochromis niloticus by dietary supplement of sorbent materials. Ecotoxicol Environ Saf. 2010;73(8):1890-5. doi:10.1016/j.ecoenv.2010.07.041 DOI: https://doi.org/10.1016/j.ecoenv.2010.07.041

Mahrous KF, Hassan AM, Radwan HA, Mahmoud MA. Inhibition of cadmium- induced genotoxicity and histopathological changes in Nile tilapia fish by Egyptian and Tunisian montmorillonite clay. Ecotoxicol Environ Saf. 2015;119:140-7. doi:10.1016/j.ecoenv.2015.04.054 DOI: https://doi.org/10.1016/j.ecoenv.2015.04.054

Wang M, Rivenbark K, Gong J, Wright FA, Phillips TD. Application of edible montmorillonite clays for the adsorption and detoxification of microcystin. ACS Appl Bio Mater. 2021;4(9):7254-65. doi:10.1021/acsabm.1c00779 DOI: https://doi.org/10.1021/acsabm.1c00779

Wang M, Orr AA, Jakubowski JM, Bird KE, Casey CM, Hearon SE, Tamamis P, Phillips TD. Enhanced adsorption of per- and polyfluoroalkyl substances (PFAS) by edible, nutrient-amended montmorillonite clays. Water Res. 2021;188:116534. doi:10.1016/j.watres.2020.116534 DOI: https://doi.org/10.1016/j.watres.2020.116534

Ma Z, Long LH, Liu J, Cao YX. Montmorillonite adsorbs uric acid and increases the excretion of uric acid from the intestinal tract in mice. J Pharm Pharmacol. 2009;61(11):1499-504. doi:10.1211/jpp/61.11.0009 DOI: https://doi.org/10.1211/jpp.61.11.0009

Zhang YT, Wang XF, Long LH, Liu T, Cao YX. Montmorillonite adsorbs creatinine and accelerates creatinine excretion from the intestine. J Pharm Pharmacol. 2009;61(4):459-64. doi:10.1211/jpp/61.04.0007 DOI: https://doi.org/10.1211/jpp.61.04.0007

Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097-116. doi:10.1007/s11095-008-9661-9 DOI: https://doi.org/10.1007/s11095-008-9661-9

Taleblou N, Sirousazar M, Hassan ZM, Khaligh SG. Capecitabine-loaded anti-cancer nanocomposite hydrogel drug delivery systems: in vitro and in vivo efficacy against the 4T1 murine breast cancer cells. J Biomater Sci Polym Ed. 2020;31(1):72-92. doi:10.1080/09205063.2019.1675225 DOI: https://doi.org/10.1080/09205063.2019.1675225

Kouser R, Vashist A, Zafaryab M, Rizvi MA, Ahmad S. Na-montmorillonite-dispersed sustainable polymer nanocomposite hydrogel films for anticancer drug delivery. ACS Omega. 2018;3(11):15809-20. doi:110.1021/acsomega.8b01691 DOI: https://doi.org/10.1021/acsomega.8b01691

Yew YP, Shameli K, Mohamad SE, Lee KX, Teow SY. Green synthesized montmorillonite/carrageenan/Fe3O4 nanocomposites for pH-responsive release of protocatechuic acid and its anticancer activity. Int J Mol Sci. 2020;21(14):4851. doi:10.3390/ijms21144851 DOI: https://doi.org/10.3390/ijms21144851

Yew YP, Shameli K, Mohamad SEB, Nagao Y, Teow SY, Lee KX, Mohamed Isa ED. Potential anticancer activity of protocatechuic acid loaded in montmorillonite/Fe3O4 nanocomposites stabilized by seaweed Kappaphycus alvarezii. Int J Pharm. 2019;572:118743. doi:10.1016/j.ijpharm.2019.118743 DOI: https://doi.org/10.1016/j.ijpharm.2019.118743

Jafari H, Atlasi Z, Mahdavinia GR, Hadifar S, Sabzi M. Magnetic κ-carrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release. Mater Sci Eng C Mater Biol Appl. 2021;124:112042. doi:10.1016/j.msec.2021.112042 DOI: https://doi.org/10.1016/j.msec.2021.112042

Kevadiya BD, Thumbar RP, Rajput MM, Rajkumar S, Brambhatt H, Joshi GV, Dangi GP, Mody HM, Gadhia PK, Bajaj HC. Montmorillonite/poly-(ε-caprolactone) composites as versatile layered material: reservoirs for anticancer drug and controlled release property. Eur J Pharm Sci. 2012;47(1):265-72. doi:10.1016/j.ejps.2012.04.009 DOI: https://doi.org/10.1016/j.ejps.2012.04.009

Yu M, Pan L, Sun L, Li J, Shang J, Zhang S, Liu D, Li W. Supramolecular assemblies constructed from β-cyclodextrin-modified montmorillonite nanosheets as carriers for 5-fluorouracil. J Mater Chem B. 2015;3(46):9043-52. doi:10.1039/c5tb01513h DOI: https://doi.org/10.1039/C5TB01513H

Kevadiya BD, Patel TA, Jhala DD, Thumbar RP, Brahmbhatt H, Pandya MP, Rajkumar S, Jena PK, Joshi GV, Gadhia PK, Tripathi CB, Bajaj HC. Layered inorganic nanocomposites: a promising carrier for 5-fluorouracil (5-FU). Eur J Pharm Biopharm. 2012;81(1):91-101. doi:10.1016/j.ejpb.2012.01.004 DOI: https://doi.org/10.1016/j.ejpb.2012.01.004

Haseli S, Pourmadadi M, Samadi A, Yazdian F, Abdouss M, Rashedi H, Navaei-Nigjeh M. A novel pH-responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan-based nanocarrier: Emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction. Biotechnol Prog. 2022;e3280. doi:10.1002/btpr.3280 DOI: https://doi.org/10.1002/btpr.3280

Kevadiya BD, Chettiar SS, Rajkumar S, Bajaj HC, Gosai KA, Brahmbhatt H. Evaluation of clay/poly (L-lactide) microcomposites as anticancer drug, 6-mercaptopurine reservoir through in vitro cytotoxicity, oxidative stress markers and in vivo pharmacokinetics. Colloids Surf B Biointerfaces. 2013;112:400-7. doi:10.1016/j.colsurfb.2013.07.008 DOI: https://doi.org/10.1016/j.colsurfb.2013.07.008

Zhang Y, Yin S, Jia Y, Qin L. Safety and efficacy of apatinib combined with iodine-125 in chemotherapy-refractory advanced lung cancer: a case report. Medicine (Baltimore) 2020; 99(33):e21600. doi:10.1097/MD.0000000000021600 DOI: https://doi.org/10.1097/MD.0000000000021600

Bham S, Saeed F, Khan M, Khan R, Siraj F, Afsar S, Mehmood T. P368 Frequency of diarrhea and pneumonia in vaccinated and unvaccinated children under 5 years of age: a single center study. Arch Dis Childhood 2019;104:A303. doi:10.1136/archdischild-2019-epa.714 DOI: https://doi.org/10.1136/archdischild-2019-epa.714

Ducrotte P, Dapoigny M, Bonaz B, Siproudhis L. Symptomatic efficacy of beidellitic montmorillonite in irritable bowel syndrome: a randomized, controlled trial. Aliment Pharmacol Ther. 2005;21(4):435-44. doi:10.1111/j.1365-2036.2005.02330.x DOI: https://doi.org/10.1111/j.1365-2036.2005.02330.x

Wang Z, Wang Y, Hu Y, Chen M, Li T. Efficacy of montmorillonite and vitamin AD combined with zinc preparation in children with diarrheal disease and its effect on inflammatory factors. Am J Transl Res. 2021;13(5):5428-35.

Jin Y, Ying L, Shi L. Probiotics combined with montmorillonite for treatment of diarrhea in children: Effect on clinical symptoms, immune function, and adverse reactions. World Chin J Dig. 2016;24(27):3925. doi:10.11569/wcjd.v24.i27.3925 DOI: https://doi.org/10.11569/wcjd.v24.i27.3925

Hu CH, Gu LY, Luan ZS, Song J, Zhu K. Effects of montmorillonite–zinc oxide hybrid on performance, diarrhea, intestinal permeability and morphology of weanling pigs. Anim Feed Sci Technol. 2012; 177(1-2):108-15; doi:10.1016/j.anifeedsci.2012.07.028 DOI: https://doi.org/10.1016/j.anifeedsci.2012.07.028

Yu M, Jin X, Liang C, Bu F, Pan D, He Q, Ming Y, Little P, Du H, Liang S, Hu R. Berberine for diarrhea in children and adults: a systematic review and meta-analysis. Therap Adv Gastroenterol. 2020;13:1756284820961299. doi:10.1177/1756284820961299 DOI: https://doi.org/10.1177/1756284820961299

Chen J, Wan CM, Gong ST, Fang F, Sun M, Qian Y, Huang Y, Wang BX, Xu CD, Ye LY, Dong M, Jin Y, Huang ZH, Wu QB, Zhu CM, Fang YH, Zhu QR, Dong YS. Chinese clinical practice guidelines for acute infectious diarrhea in children. World J Pediatr. 2018;14(5):429-36. doi:10.1007/s12519-018-0190-2 DOI: https://doi.org/10.1007/s12519-018-0190-2

Chunyong MU. Clinical analysis of montmorillonite powder combined with zinc gluconate in the treatment of 74 children with diarrhea. Chin J Prim Med Pharm. 2014;12:1498-9.

Liu XZ, Zeng Z. [Umbilical therapy combined with moxibustion for autumn diarrhea in children]. Zhongguo Zhen Jiu. 2019;39(8):832-6. doi:10.13703/j.0255-2930.2019.08.009

Song J, Li YL, Hu CH. Effects of copper-exchanged montmorillonite, as alternative to antibiotic, on diarrhea, intestinal permeability and proinflammatory cytokine of weanling pigs. Appl Clay Sci. 2013;77-78:52-5. doi:10.1016/j.clay.2013.01.016 DOI: https://doi.org/10.1016/j.clay.2013.01.016

Yao DW, Yu ZZ, Li N, Hou YN, Xu JR, Yang DJ. Copper-modified palygorskite is effective in preventing and treating diarrhea caused by Salmonella typhimurium. J Zhejiang Univ Sci B. 2017;18(6):474-80. doi:10.1631/jzus.B1600133 DOI: https://doi.org/10.1631/jzus.B1600133

Stevens G, Mascarenhas M, Mathers C. Global health risks: progress and challenges. Bull World Health Organ. 2009;87(9):646. doi:10.2471/blt.09.070565 DOI: https://doi.org/10.2471/BLT.09.070565

Emerging Risk Factors Collaboration, Wormser D, Kaptoge S, Di Angelantonio E, Wood AM, Pennells L, Thompson A, Sarwar N, Kizer JR, Lawlor DA, Nordestgaard BG, Ridker P, Salomaa V, Stevens J, Woodward M, Sattar N, Collins R, Thompson SG, Whitlock G, Danesh J. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377(9771):1085-95. doi:10.1016/S0140-6736(11)60105-0 DOI: https://doi.org/10.1016/S0140-6736(11)60105-0

Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5•24 million UK adults. Lancet. 2014; 384(9945):755-65. doi:10.1016/S0140-6736(14)60892-8 DOI: https://doi.org/10.1016/S0140-6736(14)60892-8

Arnold M, Pandeya N, Byrnes G, Renehan PAG, Stevens GA, Ezzati PM, Ferlay J, Miranda JJ, Romieu I, Dikshit R, Forman D, Soerjomataram I. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16(1):36-46. doi:10.1016/S1470-2045(14)71123-4 DOI: https://doi.org/10.1016/S1470-2045(14)71123-4

Joyce P, Dening TJ, Meola TR, Wignall A, Ulmefors H, Kovalainen M, Prestidge CA. Contrasting anti-obesity effects of smectite clays and mesoporous silica in sprague-dawley rats. ACS Appl Bio Mater. 2020;3(11):7779-88. doi:10.1021/acsabm.0c00969 DOI: https://doi.org/10.1021/acsabm.0c00969

Xu P, Dai S, Wang J, Zhang J, Liu J, Wang F, Zhai Y. Preventive obesity agent montmorillonite adsorbs dietary lipids and enhances lipid excretion from the digestive tract. Sci Rep. 2016;6:19659. doi:10.1038/srep19659 DOI: https://doi.org/10.1038/srep19659

Xu P, Hong F, Wang J, Cong Y, Dai S, Wang S, Wang J, Jin X, Wang F, Liu J, Zhai Y. Microbiome remodeling via the montmorillonite adsorption-excretion axis prevents obesity-related metabolic disorders. EBioMedicine. 2017;16:251-61. doi:10.1016/j.ebiom.2017.01.019 DOI: https://doi.org/10.1016/j.ebiom.2017.01.019

Wang Q, Shen J, Mo E, Zhang H, Wang J, Hu X, Zhou J, Bai H, Tang G. A versatile ultrafine and super-absorptive H+-modified montmorillonite: application for metabolic syndrome intervention and gastric mucosal protection. Biomater Sci. 2020;8(12):3370-80. doi:10.1039/d0bm00474j DOI: https://doi.org/10.1039/D0BM00474J

Dening TJ, Joyce P, Kovalainen M, Gustafsson H, Prestidge CA. Spray dried smectite clay particles as a novel treatment against obesity. Pharm Res. 2018;36(1):21. doi:10.1007/s11095-018-2552-9 DOI: https://doi.org/10.1007/s11095-018-2552-9

Gutman R, Rauch M, Neuman A, Khamaisi H, Jonas-Levi A, Konovalova Y, Rytwo G. Sepiolite Clay attenuates the development of hypercholesterolemia and obesity in mice fed a high-fat high-cholesterol diet. J Med Food. 2020;23(3):289-96. doi:10.1089/jmf.2019.0030 DOI: https://doi.org/10.1089/jmf.2019.0030

Jahromi MAM, Zangabad PC, Basri SMM, Zangabad KS, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33-64. doi:10.1016/j.addr.2017.08.001 DOI: https://doi.org/10.1016/j.addr.2017.08.001

Mascarenhas-Melo F, Peixoto D, Aleixo C, S Gonçalves MB, Raza F, Pawar KD, Veiga F, Liu M, Paiva-Santos AC. Nanoclays for wound management applications. Drug Deliv Transl Res. 2022. doi:10.1007/s13346-022-01279-3 DOI: https://doi.org/10.1007/s13346-022-01279-3

Bramhill J, Ross S, Ross G. Bioactive nanocomposites for tissue repair and regeneration: a review. Int J Environ Res Public Health. 2017;14:1-21. doi:10.3390/ijerph14010066 DOI: https://doi.org/10.3390/ijerph14010066

Sandri G, Bonferoni MC, Ferrari F, Rossi S, Aguzzi C, Mori M, Grisoli P, Cerezo P, Tenci M, Viseras C, Caramella C. Montmorillonite-chitosan-silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydr Polym. 2014;102:970-7. doi:10.1016/j.carbpol.2013.10.029 DOI: https://doi.org/10.1016/j.carbpol.2013.10.029

Naumenko EA, Guryanov ID, Yendluri R, Lvov YM, Fakhrullin RF. Clay nanotube-biopolymer composite scaffolds for tissue engineering. Nanoscale. 2016;8:7257-71. doi:10.1039/C6NR00641H DOI: https://doi.org/10.1039/C6NR00641H

Sandri G, Aguzzi C, Rossi S, Bonferoni MC, Bruni G, Boselli C, Cornaglia AI, Riva F, Viseras C, Caramella C, Ferrari F. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater. 2017;57:216-24. doi:10.1016/j.actbio.2017.05.032 DOI: https://doi.org/10.1016/j.actbio.2017.05.032

Liu C, Liu C, Yu S, Wang N, Yao W, Liu X, Sun G, Song Q, Qiao W. Efficient antibacterial dextran-montmorillonite composite sponge for rapid hemostasis with wound healing. Int J Biol Macromol. 2020;160:1130-43. doi:10.1016/j.ijbiomac.2020.05.140 DOI: https://doi.org/10.1016/j.ijbiomac.2020.05.140

Li G, Quan K, Liang Y, Li T, Yuan Q, Tao L, Xie Q, Wang X. Graphene-montmorillonite composite sponge for safe and effective hemostasis. ACS Appl Mater Interfaces. 2016;8(51):35071-80. doi:10.1021/acsami.6b13302 DOI: https://doi.org/10.1021/acsami.6b13302

Sajjad W, Khan T, Ul-Islam M, Khan R, Hussain Z, Khalid A, Wahid F. Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr Polym. 2019;206:548-56. doi:10.1016/j.carbpol.2018.11.023 DOI: https://doi.org/10.1016/j.carbpol.2018.11.023

García-Villén F, Faccendini A, Aguzzi C, Cerezo P, Bonferoni MC, Rossi S, Grisoli P, Ruggeri M, Ferrari F, Sandri G, Viseras C. Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds. Int J Nanomedicine. 2019;14:5051-60. doi:10.2147/IJN.S208713 DOI: https://doi.org/10.2147/IJN.S208713

Sandri G, Faccendini A, Longo M, Ruggeri M, Rossi S, Bonferoni MC, Miele D, Prina-Mello A, Aguzzi C, Viseras C, Ferrari F. Halloysite- and montmorillonite-loaded scaffolds as enhancers of chronic wound healing. Pharmaceutics. 2020;12(2):179. doi:10.3390/pharmaceutics12020179 DOI: https://doi.org/10.3390/pharmaceutics12020179

Ambrogi V, Pietrella D, Nocchetti M, Casagrande S, Moretti V, De Marco S, Ricci M. Montmorillonite-chitosan-chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J Colloid Interface Sci. 2017;491:265-72. doi:10.1016/j.jcis.2016.12.058 DOI: https://doi.org/10.1016/j.jcis.2016.12.058

Delir S, Sirousazar M, Kheiri F. Clindamycin releasing bionanocomposite hydrogels as potential wound dressings for the treatment of infected wounds. J Biomater Sci Polym Ed. 2020;31(12):1489-514. doi:10.1080/09205063.2020.1764161 DOI: https://doi.org/10.1080/09205063.2020.1764161

Sadeghianmaryan A, Yazdanpanah Z, Soltani YA, Sardroud HA, Nasirtabrizi MH, Chen X. Curcumin-loaded electrospun polycaprolactone/montmorillonite nanocomposite: wound dressing application with anti-bacterial and low cell toxicity properties. J Biomater Sci Polym Ed. 2020;31(2):169-87. doi:10.1080/09205063.2019.1680928 DOI: https://doi.org/10.1080/09205063.2019.1680928

Jahani-Javanmardi A, Sirousazar M, Shaabani Y, Kheiri F. Egg white/poly (vinyl alcohol)/MMT nanocomposite hydrogels for wound dressing. J Biomater Sci Polym Ed. 2016;27(12):1262-76. doi:10.1080/09205063.2016.1191825 DOI: https://doi.org/10.1080/09205063.2016.1191825

Kevadiya BD, Rajkumar S, Bajaj HC, Chettiar SS, Gosai K, Brahmbhatt H, Bhatt AS, Barvaliya YK, Dave GS, Kothari RK. Biodegradable gelatin-ciprofloxacin-montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloids Surf B Biointerfaces. 2014;122:175-83. doi:10.1016/j.colsurfb.2014.06.051 DOI: https://doi.org/10.1016/j.colsurfb.2014.06.051

Yu X, Guo L, Liu M, Cao X, Shang S, Liu Z, Huang D, Cao Y, Cui F, Tian L. Callicarpa nudiflora loaded on chitosan-collagen/organomontmorillonite composite membrane for antibacterial activity of wound dressing. Int J Biol Macromol. 2018;120(Pt B):2279-84. doi:10.1016/j.ijbiomac.2018.08.113 DOI: https://doi.org/10.1016/j.ijbiomac.2018.08.113

Pan S, Yu H, Yang X, Yang X, Wang Y, Liu Q, Jin L, Yang Y. Application of nanomaterials in stem cell regenerative medicine of orthopedic surgery. J Nanomater. 2017;2017. doi:10.1155/2017/1985942 DOI: https://doi.org/10.1155/2017/1985942

Rahyussalim AJ, Marsetio AF, Saleh I, Kurniawati T, Whulanza Y. The needs of current implant technology in orthopaedic prosthesis biomaterials application to reduce prosthesis failure rate. J Nanomater. 2016;2016. doi:10.1155/2016/5386924 DOI: https://doi.org/10.1155/2016/5386924

Peña-Parás L, Sánchez-Fernández JA, Vidaltamayo R. Nanoclays for biomedical applications. In: Martínez LMT, editore. Handbook of ecomaterials. Springer International Publishing AG; 2018; p. 3453-71. doi:10.1007/978-3-319-68255-6_50 DOI: https://doi.org/10.1007/978-3-319-68255-6_50

Zhu TT, Zhou CH, Kabwe FB, Wu QQ, Li CS, Zhang JR. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Appl Clay Sci. 2019;169:48-66. doi:10.1016/j.clay.2018.12.006 DOI: https://doi.org/10.1016/j.clay.2018.12.006

Demir AK, Elçin AE, Elçin YM. Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Mater Sci Eng. C. 2018;89:8-14. doi:10.1016/j.msec.2018.03.021 DOI: https://doi.org/10.1016/j.msec.2018.03.021

Li D, Li P, Xu Y, Guo W, Li M, Chen M, Wang H, Lin H. Progress in montmorillonite functionalized artificial bone scaffolds: Intercalation and interlocking, nanoenhancement, and controlled drug release. J Nanomater. 2022;2022. doi:10.1155/2022/7900382 DOI: https://doi.org/10.1155/2022/7900382

Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M. FT-IR study of montmorillonite–chitosan nanocomposite materials. Spectrochim Acta A Mol Biomol Spectrosc. 2011;79(4):784-8. doi:10.1016/j.saa.2010.08.053 DOI: https://doi.org/10.1016/j.saa.2010.08.053

Shuai C, Li Y, Feng P, Yang W, Zhao Z, Liu W. Montmorillonite reduces crystallinity of poly‐l‐lactic acid scaffolds to accelerate degradation. Polym Adv Technol. 2019;30(9):2425-35. doi:10.1002/pat.4690 DOI: https://doi.org/10.1002/pat.4690

Zheng JP, Xi LF, Zhang HL, Yao KD. Correlation between reaction environment and intercalation effect in the synthesis of gelatin/montmorillonite hybrid nanocomposite. J Mater Sci Lett. 2003;22:1179-81. doi:10.1023/A:1025332029976 DOI: https://doi.org/10.1023/A:1025332029976

Nawang R, Hussein MZ, Matori KA, Abdullah CA, Hashim M. Physicochemical properties of hydroxyapatite/montmorillonite nanocomposite prepared by powder sintering. Results Phys. 2019;15:102540. doi:10.1016/j.rinp.2019.102540 DOI: https://doi.org/10.1016/j.rinp.2019.102540

Kim GJ, Kim D, Lee KJ, Kim D, Chung KH, Choi JW, An JH. Effect of nano-montmorillonite on osteoblast differentiation, mineral density, and osteoclast differentiation in bone formation. Nanomaterials (Basel). 2020;10(2):230. doi:10.3390/nano10020230 DOI: https://doi.org/10.3390/nano10020230

Park JH, Shin HJ, Kim MH, Kim JS, Kang N, Lee JY, Kim KT, Lee JI, Kim DD. Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. J Pharm Investig. 2016;46(4):363-75. doi:10.1007/s40005-016-0258-8 DOI: https://doi.org/10.1007/s40005-016-0258-8

Joshi GV, Kevadiya BD, Patel HA, Bajaj HC, Jasra RV. (2009). Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate. Int J Pharm. 2009;374(1-2):53-7. doi:10.1016/J.IJPHARM.2009.03.004 DOI: https://doi.org/10.1016/j.ijpharm.2009.03.004

Iliescu RI, Andronescu E, Ghitulica CD, Voicu G, Ficai A, Hoteteu M. Montmorillonite-alginate nanocomposite as a drug delivery system--incorporation and in vitro release of irinotecan. Int J Pharm. 2014;463(2):184-92. doi:10.1016/j.ijpharm.2013.08.043 DOI: https://doi.org/10.1016/j.ijpharm.2013.08.043

Park CG, Choi G, Kim MH, Kim SN, Lee H, Lee NK, Choy YB, Choy JH. Brimonidine-montmorillonite hybrid formulation for topical drug delivery to the eye. J Mater Chem B. 2020;8(35):7914-20. doi:10.1039/d0tb01213k DOI: https://doi.org/10.1039/D0TB01213K

Bello ML, Junior AM, Freitas CA, Moreira MLA, da Costa JP, de Souza MA, Santos BAMC, de Sousa VP, Castro HC, Rodrigues CR, Cabral LM. Development of novel montmorillonite-based sustained release system for oral bromopride delivery. Eur J Pharm Sci. 2022;175:106222. doi:10.1016/j.ejps.2022.106222 DOI: https://doi.org/10.1016/j.ejps.2022.106222

Zhao H, Ye H, Zhou J, Tang G, Hou Z, Bai H. Montmorillonite-enveloped zeolitic imidazolate framework as a nourishing oral nano-platform for gastrointestinal drug delivery. ACS Appl Mater Interfaces. 2020;12(44):49431-41. doi:10.1021/acsami.0c15494 DOI: https://doi.org/10.1021/acsami.0c15494

Kenawy ER, Shaker NO, Azaam M, Lasheen AS, Lin J, Zakaria MB. Montmorillonite intercalated norfloxacin and tobramycin for new drug-delivery systems. J Nanosci Nanotechnol. 2020;20(8):5246-51. doi:10.1166/jnn.2020.18532 DOI: https://doi.org/10.1166/jnn.2020.18532

Sharifzadeh G, Hezaveh H, Muhamad II, Hashim S, Khairuddin N. Montmorillonite-based polyacrylamide hydrogel rings for controlled vaginal drug delivery. Mater Sci Eng C Mater Biol Appl. 2020;110:110609. doi:10.1016/j.msec.2019.110609 DOI: https://doi.org/10.1016/j.msec.2019.110609

Downloads

Published

2023-06-29

How to Cite

1.
Hassen JH, Abdalkadir HK, Abed SF. An overview of medical applications of montmorillonite clay. JMS [Internet]. 2023 Jun. 29 [cited 2024 May 12];92(2):e826 . Available from: https://jms.ump.edu.pl/index.php/JMS/article/view/826

Issue

Section

Review Papers
Received 2023-03-02
Accepted 2023-04-17
Published 2023-06-29