Comparison of the effect of betanin on STAT3, STAT5, and KAP1 proteins in HepG2 and THLE-2 cells

Authors

  • Hanna Szaefer Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poland https://orcid.org/0000-0001-5875-3425
  • Katarzyna Hadryś Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poland
  • Hanna Gajewska Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poland
  • Kinga Migdałek Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poland
  • Violetta Krajka-Kuźniak Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poland https://orcid.org/0000-0001-7275-0298

DOI:

https://doi.org/10.20883/medical.e805

Keywords:

Betanin, STAT3, STAT5, KAP1, HepG2 cells, THLE-2 cells

Abstract

Background. Several studies suggest that the pleiotropic properties of betanin may interfere with different signaling pathways. Our previous studies on human hepatocytes showed that betanin activated the nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway. To further understand the exact mechanism of action of betanin, we evaluated its effect on the levels of signal transducers and activators of transcription (STATs) and KRAB domain-associated protein 1 (KAP1) in hepatoma cells (HepG2) and normal human hepatocytes (THLE-2).

Material and methods. HepG2 and THLE-2 cells were treated with 2 or 10 µM betanin for 72 h. The levels of STAT3, STAT5a, STAT5b, and KAP1 proteins in cytosolic and nuclear fractions were assessed by Western blot.

Results. At a concentration of 10 μM, betanin significantly decreased the levels of STAT3, STAT5a, and STAT5b proteins in the nuclear fraction of HepG2 cells. On the other hand, no significant changes in the levels of STAT proteins were observed in THLE-2 cells. In HepG2 cells, betanin at both tested doses increased the level of KAP1. In contrast, in THLE-2 cells, betanin at a dose of 10 µM decreased the nuclear level of KAP1.

Conclusions. Betanin modulated the levels of STAT3, STAT5, and KAP1 proteins, especially in hepatoma cells. Thus, it may be considered a potential therapeutic agent for the treatment of hepatoma.

Downloads

Download data is not yet available.

References

He G, Karin M. NF‑κB and STAT3 – key players in liver inflammation and cancer. Cell Res. 2011 Jan;21(1):159-168. doi:10.1038/cr.2010.18. DOI: https://doi.org/10.1038/cr.2010.183

Kotecha R, Takami A, Espinosa JL. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget. 2016 Aug 9;7(32):52517-52529. doi: 10.18632/oncotarget.9593. DOI: https://doi.org/10.18632/oncotarget.9593

Hadipour E, Taleghani A, Tayarani‑Najaran N, Tayarani‑Najaran Z. Biological effects of red beetroot and betalains: A review. Phytother Res. 2020 Aug;34(8):1847-1867. doi: 10.1002/ptr.6653. DOI: https://doi.org/10.1002/ptr.6653

Santamaria P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J Sci Food Agric. 2006; 86: 10-17. doi: 10.1002/jsfa.2351. DOI: https://doi.org/10.1002/jsfa.2351

Lee EJ, An D, Nguyen CTT, Patil BS, Kim J, Yoo KS. Betalain and betaine composition of greenhouse- or field‑produced beetroot (Beta vulgaris L.) and inhibition of HepG2 cell proliferation. J Agric Food Chem. 2014 Feb 12;62(6):1324-31. doi: 10.1021/jf404648u. DOI: https://doi.org/10.1021/jf404648u

Rakshanaa R , ShafreenM, Kumar N. Inhibition of Proliferation in Ovarian Cancer Cell Line (PA-1) by the Action of Green Compound "Betanin". Appl Biochem Biotechnol. 2022 Jan;194(1):71-83. doi: 10.1007/s12010-021-03744-0. DOI: https://doi.org/10.1007/s12010-021-03744-0

Zhang Q, Pan J, Wang Y, Lubet R, You M. Beetroot red (betanin) inhibits vinyl carbamate- and benzo(a)pyrene‑induced lung tumorigenesis through apoptosis. Mol Carcinog. 2013 Sep;52(9):686-91. doi: 10.1002/mc.21907. DOI: https://doi.org/10.1002/mc.21907

Salimi A, Bahiraei T, Ahdeno S, Vatanpour S, Pourahmad J. Evaluation of Cytotoxic Activity of Betanin Against U87MG Human Glioma Cells and Normal Human Lymphocytes and Its Anticancer Potential Through Mitochondrial Pathway. Nutr Cancer. 2021;73(3):450-459. doi: 10.1080/01635581.2020.1764068. DOI: https://doi.org/10.1080/01635581.2020.1764068

Zou X, Yu K, Chu X, Yang L. Betanin alleviates inflammation and ameliorates apoptosis on human oral squamous cancer cells SCC131 and SCC4 through the NF‑κB/PI3K/Akt signaling pathway. J Biochem Mol Toxicol. 2022 Aug;36(8):e23094. doi: 10.1002/jbt.23094. DOI: https://doi.org/10.1002/jbt.23094

Krajka‑Kuźniak V, Paluszczak J, Szaefer H, Baer‑Dubowska W. Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. Br J Nutr. 2013 Dec;110(12):2138-49. doi: 10.1017/S0007114513001645. DOI: https://doi.org/10.1017/S0007114513001645

Svinka J, Mikulits W, Eferl R. STAT3 in hepatocellular carcinoma: new perspectives. Hepat Oncol. 2014 Jan;1(1):107-120. doi: 10.2217/hep.13.7. DOI: https://doi.org/10.2217/hep.13.7

Halim CE, Deng S, Ong MS, Yap CT. Involvement of STAT5 in Oncogenesis. Biomedicines. 2020 Aug 28;8(9):316. doi: 10.3390/biomedicines8090316. DOI: https://doi.org/10.3390/biomedicines8090316

Tsuruma R, Ohbayashi N, Kamitani S, Ikeda O, Sato N, Muromoto R, Sekine Y, Oritani K, Matsuda T. Physical and functional interactions between STAT3 and KAP1. Oncogene. 2008 May 8;27(21):3054-9. doi: 10.1038/sj.onc.1210952. DOI: https://doi.org/10.1038/sj.onc.1210952

Kamitani S, Ohbayashi N, Ikeda O, Togi S, Muromoto R, Sekine Y, Ohta K, Ishiyama H, Matsuda T. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression. Biochem Biophys Res Commun. 2008 May 30;370(2):366-70. doi: 10.1016/j.bbrc.2008.03.104. DOI: https://doi.org/10.1016/j.bbrc.2008.03.104

Kamitani S, Togi S, Ikeda O, Nakasuji M, Sakauchi A, Sekine Y, Muromoto R, Oritani K, Matsuda T. Krüppel‑associated box‑associated protein 1 negatively regulates TNF‑α-induced NF‑κB transcriptional activity by influencing the interactions among STAT3, p300, and NF‑κB/p65, J Immunol. 2011 Sep 1;187(5):2476-83. doi: 10.4049/jimmunol.1003243. DOI: https://doi.org/10.4049/jimmunol.1003243

Wang Y, Jiang J, Li Q, Ma H, Xu Z, Gao Y. KAP1 is overexpressed in hepatocellular carcinoma and its clinical significance. Int J Clin Oncol. 2016 Oct;21(5):927-933. doi: 10.1007/s10147-016-0979-8. DOI: https://doi.org/10.1007/s10147-016-0979-8

Bromberg J. Stat proteins and oncogenesis. Clin Invest. 2002 May;109(9):1139-42. doi: 10.1172/JCI15617. DOI: https://doi.org/10.1172/JCI0215617

Chai EZP , Shanmugam MK , Arfuso F, Dharmarajan A, Wang C, Kumar AP, Samy RP, Lim LHK, Wang L, Goh BC, Ahn KS, Hui KM , Sethi G. Targeting transcription factor STAT3 for cancer prevention and therapy. Pharmacol Ther. 2016 Jun;162:86-97. doi: 10.1016/j.pharmthera.2015.10.004. DOI: https://doi.org/10.1016/j.pharmthera.2015.10.004

Thilakasiri PS, Dmello RS, Nero TL , Parker MW, Ernst M, Chand AL. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin Cancer Biol. 2021 Jan;68:31-46. doi: 10.1016/j.semcancer.2019.09.022. DOI: https://doi.org/10.1016/j.semcancer.2019.09.022

Fu B , Meng W, Zhao H , Zhang B , Tang H , Zou Y, Yao J , Li H, Zhang T. GRAM domain‑containing protein 1A (GRAMD1A) promotes the expansion of hepatocellular carcinoma stem cell and hepatocellular carcinoma growth through STAT5. Sci Rep. 2016 Sep 2;6:31963. doi: 10.1038/srep31963. DOI: https://doi.org/10.1038/srep31963

Zhao C, Wang Q, Wang B, Sun Q, He Z, Hong J , Kuehn F, Liu E, Zhang Z. IGF-1 induces the epithelial‑mesenchymal transition via Stat5 in hepatocellular carcinoma. Oncotarget. 2017 Dec 5;8(67):111922-111930. doi: 10.18632/oncotarget.22952. DOI: https://doi.org/10.18632/oncotarget.22952

Lee TK, Man K, Poon R TP, Lo C M, A Yuen AP, Ng IO, Ng KT, Leonard W, Fan ST. Signal transducers and activators of transcription 5b activation enhances hepatocellular carcinoma aggressiveness through induction of epithelial‑mesenchymal transition. Cancer Res. 2006 Oct 15;66(20):9948-56. doi:10.1158/0008-5472.CAN-06-1092. DOI: https://doi.org/10.1158/0008-5472.CAN-06-1092

Yu JH, Zhu BM, Riedlinger G, Kang K, Hennighausen L. The liver‑specific tumor suppressor STAT5 controls expression of the reactive oxygen species‑generating enzyme NOX4 and the proapoptotic proteins PUMA and BIM in mice. Hepatology. 2012 Dec;56(6):2375-86. doi: 10.1002/hep.25900. DOI: https://doi.org/10.1002/hep.25900

Lechner JF, Stoner GD. Red Beetroot and Betalains as Cancer Chemopreventative Agents. Molecules. 2019 Apr 23;24(8):1602. doi: 10.3390/molecules24081602. DOI: https://doi.org/10.3390/molecules24081602

Liu R, Choi HS, Zhen X, Kim S‑L, Kim J‑H, Ko Y‑Ch, Yun B‑S, Lee DS. Betavulgarin Isolated from Sugar Beet (Beta vulgaris) Suppresses Breast Cancer Stem Cells through Stat3 Signaling. Molecules. 2020 Jul; 25(13): 2999. doi: 10.3390/molecules25132999. DOI: https://doi.org/10.3390/molecules25132999

Aggarwal H, Nair J, Sharma P, Sehgal R, Naeem U, Rajora P, Mathur R. Aegle marmelos differentially affects hepatic markers of glycolysis, insulin signalling pathway, hypoxia, and inflammation in HepG2 cells grown in fructose versus glucose‑rich environment. Mol Cell Biochem. 2018 Jan;438(1-2):1-16. doi: 10.1007/s11010-017-3108-8. DOI: https://doi.org/10.1007/s11010-017-3108-8

Soni VK, Shukla D, Kumar A, Vishvakarma NK. Curcumin circumvent lactate‑induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1. Int J Biochem Cell Biol. 2020 Jun;123:105752. doi: 10.1016/j.biocel.2020.105752. DOI: https://doi.org/10.1016/j.biocel.2020.105752

Li Y, Zhu W, Li J, Liu M, Wei M. Resveratrol suppresses the STAT3 signaling pathway and inhibits proliferation of high glucose‑exposed HepG2 cells partly through SIRT1. Oncol Rep. 2013 Dec;30(6):2820–2828. doi: 10.3892/or.2013.2748. DOI: https://doi.org/10.3892/or.2013.2748

Liu P, Atkinson SJ, Akbareian SE, Zhou Z, Munsterberg A, Robinson SD, Bao Y. Sulforaphane exerts anti‑angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling. Sci Rep. 2017 Oct 4;7(1):12651. doi: 10.1038/s41598-017-12855-w. DOI: https://doi.org/10.1038/s41598-017-12855-w

Jung YY, Shanmugam MK, Narula AS, Kim Ch, Lee JH, Namjoshi OA, Blough BE, Sethi G, Ahn KS. Oxymatrine attenuates tumor growth and deactivates STAT5 signaling in a lung cancer xenograft model. Cancers (Basel). 2019 Jan 7;11(1):49. doi: 10.3390/cancers11010049. DOI: https://doi.org/10.3390/cancers11010049

Pinz S, Unser S, Rascle A. The natural chemopreventive agent sulforaphane inhibits STAT5 activity. PLoS One. 2014 Jun 9; 9(6): e99391: 1-14.doi: 10.1371/journal.pone.0099391. DOI: https://doi.org/10.1371/journal.pone.0099391

Cheng CT, Kuo CY, Ann DK. KAPtain in charge of multiple missions: Emerging roles of KAP1. World J Biol Chem. 2014 Aug 26;5(3):308-20. doi: 10.4331/wjbc.v5.i3.308. DOI: https://doi.org/10.4331/wjbc.v5.i3.308

Wu GJ, Pen J, Huang Y, An S, Liu Y, Yang Y, Hao Q, Guo X‑X, Xu T‑R. KAP1 inhibits the Raf‑MEK‑ERK pathway to promote tumorigenesis in A549 lung cancer cells Mol Carcinog. 2018 Oct;57(10):1396-1407. doi: 10.1002/mc.22853. DOI: https://doi.org/10.1002/mc.22853

Downloads

Published

2023-06-29

How to Cite

1.
Szaefer H, Hadryś K, Gajewska H, Migdałek K, Krajka-Kuźniak V. Comparison of the effect of betanin on STAT3, STAT5, and KAP1 proteins in HepG2 and THLE-2 cells. JMS [Internet]. 2023 Jun. 29 [cited 2024 May 12];92(2):e805. Available from: https://jms.ump.edu.pl/index.php/JMS/article/view/805

Issue

Section

Original Papers
Received 2023-01-16
Accepted 2023-04-03
Published 2023-06-29