Biodegradable and biocompatible synthetic polymers for applications in bone and muscle tissue engineering

Authors

DOI:

https://doi.org/10.20883/medical.e712

Keywords:

biomaterials, bone tissue scaffold, tissue engineering, muscle tissue scaffold, biodegradable polymers, synthetic polymers

Abstract

In medicine, tissue engineering has made significant advances. Using tissue engineering techniques, transplant treatments result in less donor site morbidity and need fewer surgeries overall. It is now possible to create cell-supporting scaffolds that degrade as new tissue grows on them, replacing them until complete body function is restored. Synthetic polymers have been a significant area of study for biodegradable scaffolds due to their ability to provide customizable biodegradable and mechanical features as well as a low immunogenic effect due to biocompatibility. The food and drug administration has given the biodegradable polymers widespread approval after they showed their reliability. In the context of tissue engineering, this paper aims to deliver an overview of the area of biodegradable and biocompatible synthetic polymers. Frequently used synthetic biodegradable polymers utilized in tissue scaffolding, scaffold specifications, polymer synthesis, degradation factors, as well as fabrication methods are discussed. In order to emphasize the many desired properties and corresponding needs for skeletal muscle and bone, particular examples of synthetic polymer scaffolds are investigated. Increased biocompatibility, functionality and clinical applications will be made possible by further studies into novel polymer and scaffold fabrication approaches.

 

Downloads

Download data is not yet available.

References

O’Brien, F. J. Biomaterials & scaffolds for tissue engineering, Materials Today 2011; 14 (3): 88–95 https://doi.org/10.1016/S1369-7021(11)70058-X DOI: https://doi.org/10.1016/S1369-7021(11)70058-X

Badylak, S. The extracellular matrix as a scaffold for tissue reconstruction, Seminars in Cell and Developmental Biology 2002;13 (5): 377–83 DOI:10.1016/s1084952102000940 DOI: https://doi.org/10.1016/S1084952102000940

Flessner, M. The role of extracellular matrix in transperitoneal transport of water and solutes, Peritoneal Dialysis International 2001; 21 (3): 24–29 PMID: 11887829 DOI: https://doi.org/10.1177/089686080102103S04

Caddeo, S., Boffi M. and Sartori S. Tissue engineering approaches in the design of healthy and pathological in vitro tissue models, Frontiers in Bioengineering and Biotechnology 2017; 5: 1–22 https://doi.org/10.3389/fbioe.2017.00040 DOI: https://doi.org/10.3389/fbioe.2017.00040

Martina, M. and Hutmacher D. Biodegradable polymers applied in tissue engineering research: A review, Polymer International 2007; 56 (2): 145–57 https://doi.org/10.1002/pi.2108 DOI: https://doi.org/10.1002/pi.2108

Rezwan, K., Chen Q., Blaker J., and Boccaccini A. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering’, Biomaterials 2006; 27 (18): 3413–31 DOI: 10.1016/j.biomaterials.2006.01.039 DOI: https://doi.org/10.1016/j.biomaterials.2006.01.039

Yang, S., Leong K., Du Z. and Chua, C. The design of scaffolds for use in tissue engineering. Part I.Traditional factors, Tissue Engineering 2001; 7 (6): 679–89 DOI: 10.1089/107632701753337645 DOI: https://doi.org/10.1089/107632701753337645

Ge, Z., Jin Z. and Cao, T. Manufacture of degradable polymeric scaffolds for bone regeneration, Biomedical materials 2008; 3 (2): 1–11 DOI: 10.1088/1748-6041/3/2/022001 DOI: https://doi.org/10.1088/1748-6041/3/2/022001

Alizadeh-Osgouei, M., Yuncang, L. and Wen C., A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications, Bioactive Materials 2019; 4: 22–36 doi: 10.1016/j.bioactmat.2018.11.003 DOI: https://doi.org/10.1016/j.bioactmat.2018.11.003

Kang, Z., Wang Y., Xu, J., Song, G., Ding, M., Zhao, H. and Wang, J. An RGD-containing peptide derived from wild silkworm silk fibroin promotes cell adhesion and spreading, Polymers 2018; 10 (11): 1193 doi: 10.3390/polym10111193 DOI: https://doi.org/10.3390/polym10111193

Kroeze RJ, Helder MN, Govaert LE, Smit TH. Biodegradable Polymers in Bone Tissue Engineering. Materials. 2009; 2(3):833–56. doi: 10.3390/ma2030833

Arora, B., Bhatia, R., and Attri, P. , ‘Bionanocomposites: Green materials for a sustainable future’, Hussain, C. M. and A. K. Mishra (eds), New Polymer Nanocomposites for Environmental Remediation, Elsevier Inc. 2018; 699–712 https://doi.org/10.1016/B978-0-12-811033-1.00027-5 DOI: https://doi.org/10.1016/B978-0-12-811033-1.00027-5

Al Tawil, E., Monnier, A., Nguyen, Q., and Deschrevel, B. Microarchitecture of poly (lactic acid)membranes with an interconnected network of macropores and micropores influences cell behavior’, European Polymer Journal 2018; 105: 370–88 DOI:10.1016/J.EURPOLYMJ.2018.06.012 DOI: https://doi.org/10.1016/j.eurpolymj.2018.06.012

Ma, S., Wang, Z., Guo, Y., Wang, P., Yang, Z., and Han, L. Enhanced osteoinduction of electrospun scaffolds with assemblies of hematite nanoparticles as a bioactive interface’, International Journal of Nanomedicine 2019; 14: 1050–68 DOI: 10.2147/IJN.S185122 DOI: https://doi.org/10.2147/IJN.S185122

Göpferich, A., Karydas, D., and Langer, R. Predicting drug release from cylindric polyanhydride matrix discs, European Journal of Pharmaceutics and Biopharmaceutics 1995; 41 (2)” 81–87

Shebi, A. and Lisa, S. Pectin mediated synthesis of nano hydroxyapatite-decorated poly (lactic acid) honeycomb membranes for tissue engineering, Carbohydrate Polymers 2018, 201: 39–47 DOI: 10.1016/j.carbpol.2018.08.012 DOI: https://doi.org/10.1016/j.carbpol.2018.08.012

Chen, G.-Q. and Wu, Q. The application of polyhydroxyalkanoates as tissue engineering materials, Biomaterials 2005; 26 (33): 6565–78 DOI: 10.1016/j.biomaterials.2005.04.036 DOI: https://doi.org/10.1016/j.biomaterials.2005.04.036

Han, J., Wu, l., Hou, J., Zhao, D., and Xiang, H. Biosynthesis, Characterization, and hemostasis potential of tailor-made poly (3-hydroxybutyrate-co-3-hydroxyvalerate) produced by haloferaxmediterranei, Biomacromolecules 2015; 16 (33): 578–88 https://doi.org/10.1021/bm5016267 DOI: https://doi.org/10.1021/bm5016267

Tschan, M., Gauvin, R., and Thomas, C. Controlling polymer stereochemistry in ring opening polymerization: A decade of advances shaping the future of biodegradable polyesters, Chemical Society Review 2021; 50: 13587–608 https://doi.org/10.1039/D1CS00356A DOI: https://doi.org/10.1039/D1CS00356A

Turco, R., Santagata, G., Corrado, I., Pezzella, C., and Di Serio, M. In vivo and post-synthesis strategies to enhance the properties of PHB-based materials: A review, Frontiers in Bioengineering andBiotechnology 2020; 8: 1–31 https://doi.org/10.3389/fbioe.2020.619266 DOI: https://doi.org/10.3389/fbioe.2020.619266

Shi, J., Yu, L. and Ding, J. ‘PEG-based thermosensitive and biodegradable hydrogels, ActaBiomaterialia 2021; 128: 42–59 DOI: 10.1016/j.actbio.2021.04.009 DOI: https://doi.org/10.1016/j.actbio.2021.04.009

Göpferich, A. Mechanisms of polymer degradation and erosion, Biomaterials 1996; 17 (2): 103–14 DOI: 10.1016/0142-9612(96)85755-3 DOI: https://doi.org/10.1016/0142-9612(96)85755-3

Kroeze, R., Helder, M., Govaert, L., and Smit, T. Biodegradable polymers in bone tissue engineering.materials, Biomaterials 2009; 3 (2): 833–56 doi: 10.3390/ma2030833 DOI: https://doi.org/10.3390/ma2030833

Wuisman, P. and Smit, T. Bioresorbable polymers: Heading for a new generation of spinal cages, European Spine Journal 2006; 15 (2): 133–48 doi: 10.1007/s00586-005-1003-6 DOI: https://doi.org/10.1007/s00586-005-1003-6

Revati, R., Majid, M., and Normahira, M. Biodegradable poly (lactic acid) scaffold for tissue engineering: A brief review, Journal of Polymer Science and Technology 2015; 1 (1): 16–24 Corpus ID: 136099949

Agatemor, C. and Shaver, M. Tacticity-induced changes in the micellization and degradation properties of poly (lactic acid)-block-poly (ethylene glycol) copolymers’, Biomacromolecules 2013; 14 (3): 699–708 https://doi.org/10.1021/bm400060x DOI: https://doi.org/10.1021/bm400060x

Målberg, S., Höglund, A., and Albertsson, A. Macromolecular design of aliphatic polyesters with maintained mechanical properties and a rapid, customized degradation profile, Biomacromolecules 2011; 12(6): 2382–2388 https://doi.org/10.1021/bm2004675 DOI: https://doi.org/10.1021/bm2004675

Wanamaker, C., Tolman, W., and Hillmyer, M. Hydrolytic degradation behavior of a renewable thermoplastic elastomer, Biomacromolecules 2009; 10 (2): 443–448 https://doi.org/10.1021/bm801292v DOI: https://doi.org/10.1021/bm801292v

Arias, V., Höglund, A., Odelius, K., and Albertsson, A. Tuning the degradation profiles of poly (l-lactide)-based materials through miscibility, Biomacromolecules 2014; 15 (1): 391–402 https://doi.org/10.1021/bm401667b DOI: https://doi.org/10.1021/bm401667b

Robert, J. and Aubrecht, K. Ring-opening polymerization of lactide to form a biodegradable polymer, Journal of Chemical Education 2008; 85 (2): 1–3 DOI:10.1021/ed085p258 DOI: https://doi.org/10.1021/ed085p258

Billiet, L., Fournier, D., and Prez, F. Step-growth polymerization and “click” chemistry: The oldest polymers rejuvenated, Polymer 2009; 50: 3877–86 DOI: https://doi.org/10.1016/j.polymer.2009.06.034

Fukushima, K. and Nozaki, K. Organocatalysis: A paradigm shift in the synthesis of aliphatic polyesters and polycarbonates, Macromolecules 2020; 53 (13): 5018–22 https://doi.org/10.1021/acs.macromol.0c00582 DOI: https://doi.org/10.1021/acs.macromol.0c00582

Jérôme, C. and Lecomte, P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization, Advanced Drug Delivery Reviews 2008; 60 (9): 1056–76 DOI: 10.1016/j.addr.2008.02.008 DOI: https://doi.org/10.1016/j.addr.2008.02.008

Van Wouwe, P., Dusselier, M., Vanleeuw, E., and Sels, B. Lactide synthesis and chirality control for polylactic acid production, ChemSusChem 2016; 9 (9): 907–21 https://doi.org/10.1002/cssc.201501695 DOI: https://doi.org/10.1002/cssc.201501695

Pappuru, S., and Chakraborty, D. Progress in metal-free cooperative catalysis for the ring-opening polymerization of cyclic anhydrides and epoxides, European Polymer Journal 2019; 121: 1–12 DOI: 10.1016/j.eurpolymj.2019.109276 DOI: https://doi.org/10.1016/j.eurpolymj.2019.109276

Asefnejad, A., Khorasani, A., Behnamghader, M., Farsadzadeh, B., and Bonakdar, S. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method:Physical properties and in vitro assay, International Journal of Nanomedicine 2011; 6: 2375–84 DOI: 10.2147/IJN.S15586 DOI: https://doi.org/10.2147/IJN.S15586

Goyker, S., Yilgor, E., Yilgor, I., Berber, E., Vrana, E., Orhan, K., Monsef, Y., Guvener, O., Zinnuroglu, M., Otoand C., Huri, P. 3D printed biodegradable polyurethane urea elastomer recapitulates skeletal muscle structure and function, ACS Biomaterials Science and Engineering 2021; 7: 5189–205 DOI: 10.1021/acsbiomaterials.1c00703 DOI: https://doi.org/10.1021/acsbiomaterials.1c00703

Douka, A., Vouyiouka, S., Papaspyridi, L., and Papaspyrides, C. A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides, Progress in Polymer Science 2016; 79: 1–25 DOI:10.1016/j.progpolymsci.2017.10.001 DOI: https://doi.org/10.1016/j.progpolymsci.2017.10.001

Zhao, H. Chapter One – Enzymatic polymerisation to polyesters in nonaqueous solvents, Methods in Enzymology 2019; 627: 1–21 DOI: 10.1016/bs.mie.2019.03.002 DOI: https://doi.org/10.1016/bs.mie.2019.03.002

Dong, R., Zhao, X., Guo, B., and Ma, P. Biocompatible elastic conductive films significantly cantly enhanced myogenic differentiation of myoblast for skeletal muscle regeneration, Biomacromolecules 2017, 18 (9): 2808–19 https://doi.org/10.1021/acs.biomac.7b00749 DOI: https://doi.org/10.1021/acs.biomac.7b00749

Agrawal, C. and Ray, R. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, Journal of Biomedical Materials Research 2001; 55 (2): 141–50 DOI: 10.1002/1097-4636(200105)55:2<141::aid-jbm1000>3.0.co;2-j DOI: https://doi.org/10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J

Yadav, S., Tawade, P., Bachal, K., Rakshe, M., Gandhi, P., Majumder, A. Scalable large-area mesh-structured microfluidic gradient generator for drug testing applications, bioRxiv 2022 doi: https://doi.org/10.1101/2022.07.14.500002 DOI: https://doi.org/10.1101/2022.07.14.500002

Haider, A., Haider, S., Kummara, M., Kamal, T., Alghyamah, A., Iftikhar, F., Bano, B., Khan, N., Afridi, M., Han, S., Alrahlah, A., and Khan, R. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review, Journal of Saudi Chemical Society 2020; 24: 186–215 https://doi.org/10.1016/j.jscs.2020.01.002 DOI: https://doi.org/10.1016/j.jscs.2020.01.002

Deb, P., Deoghare, A., Borah, A., Barua, E., and Das Lala, S. Scaffold development using biomaterials: A Review, Materials Today: Proceedings 2018; 5: 12909–19 https://doi.org/10.1016/j.matpr.2018.02.276 DOI: https://doi.org/10.1016/j.matpr.2018.02.276

Chen, M.-C., Sun, Y. -C., and Chen, Y.-H. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering, Acta Biomaterialia 2013; 9 (3): 5562–72 DOI: 10.1016/j.actbio.2012.10.024 DOI: https://doi.org/10.1016/j.actbio.2012.10.024

Shick, T., Kadir, A., Ngadiman, N., and Ma’aram, A. A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering, Journal of Bioactive and Compatible Polymers 2019; 34 (6): 415–35 https://doi.org/10.1177%2F0883911519877426 DOI: https://doi.org/10.1177/0883911519877426

Temple, J., Hutton, D., Hung, B., Huri, P., Cook, C., and Kondragunta, R. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds, Journal of Biomedical Materials Research Part A 2014; 102 (12): 4317–25 DOI: 10.1002/jbm.a.35107 DOI: https://doi.org/10.1002/jbm.a.35107

Wei, C., Cai, L., Sonawane, B., Wang, S., and Dong, J. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers, Biofabrication 2012; 4 (2): 1–12 DOI: 10.1088/1758-5082/4/2/025009 DOI: https://doi.org/10.1088/1758-5082/4/2/025009

Tan, L., Zhu W., and Zhou, K. Recent progress on polymer materials for additive manufacturing, Advanced Functional Materials 2020; 30: 1–54 https://doi.org/10.1002/adfm.202003062 DOI: https://doi.org/10.1002/adfm.202003062

Ahangar, P., Cooke, M., Weber, M., and Rosenzweig, D. Current biomedical applications of 3D printing and additive manufacturing, Applied Sciences 2018; 9 :1–23. DOI:10.3390/app9081713 DOI: https://doi.org/10.3390/app9081713

Khalili, S., Khorasani, S., Razavi, S., Hashemibeni, B., and Tamayol, A. Nanofibrous scaffolds with biomimetic composition for skin regeneration, Applied Biochemistry and Biotechnology 2019; 187 (4): 1193–1203 DOI: 10.1007/s12010-018-2871-7 DOI: https://doi.org/10.1007/s12010-018-2871-7

Beldjilali-Labro, M., Garcia, A., Farhat, F., Bedoui, F., Grosset, J-M., Dufresne, M., and Legallais, C. Biomaterials in tendon and skeletal muscle tissue engineering: current trends and challenges, Materials 2018;11: 1–49 DOI: 10.3390/ma11071116 DOI: https://doi.org/10.3390/ma11071116

Sensini, A., Massafra, G., Gotti, C., Zucchelli, A., and Cristofolini, L. Tissue engineering for the insertions of tendons and ligaments: an overview of electrospun biomaterials and structures, Frontiers in Bioengineering and Biotechnology 2021; 9: 1–23 https://doi.org/10.3389/fbioe.2021.645544 DOI: https://doi.org/10.3389/fbioe.2021.645544

Pereira, H., Cengiz, I., Silva, F., Reis, R., and Oliveira, J. Scaffolds and coatings for bone regeneration, Journal of Materials Science: Materials in Medicine 2020; 31 (27): 1–16 DOI: 10.1007/s10856-020-06364-y DOI: https://doi.org/10.1007/s10856-020-06364-y

Freedman, B. and Mooney, D. Biomaterials to mimic and heal connective tissues, AdvancedMaterials 2019; 31: 1–27 https://doi.org/10.1002/adma.201806695 DOI: https://doi.org/10.1002/adma.201806695

Williams, D. Challenges with the development of biomaterials for sustainable tissue engineering, Frontiers in Bioengineering and Biotechnology 2019; 7 (127): 1–10 https://doi.org/10.3389/fbioe.2019.00127 DOI: https://doi.org/10.3389/fbioe.2019.00127

Roy, T., Simon, J., Ricci, J., Rekow, E., Thompson, V., and Parsons, J. Performance of degradable composite bone repair products made via three-dimensional fabrication techniques, Journal of Biomedical Materials Research Part A 2013; 66 (2): 283–291 DOI: 10.1002/jbm.a.10582 DOI: https://doi.org/10.1002/jbm.a.10582

Karageorgiou, V. and Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 2005; 26 (27): 5474–91 DOI: 10.1016/j.biomaterials.2005.02.002 DOI: https://doi.org/10.1016/j.biomaterials.2005.02.002

Chen, R. and Mooney D. Polymeric growth factor delivery strategies for tissue engineering’, Pharmaceutical Research 2003; 20 (8): 1103–1112. DOI:10.1023/A:1025034925152 DOI: https://doi.org/10.1023/A:1025034925152

Yang, X., Li, Y., Liu, X., Huang, Q., Zhang R., and Feng Q. Incorporation of silica nanoparticles to PLGAelectrospun fibers for osteogenic differentiation of human osteoblast-like cells’, RegenerativeBiomaterials 2018; 5 (4): 229–38 doi: 10.1093/rb/rby014 DOI: https://doi.org/10.1093/rb/rby014

Zhang, Y., Wang, C., Fu, L., Ye, S., Wang, M., and Zhou, Y Fabrication and application of novel porous scaffold in situ-loaded graphene oxide and osteogenic peptide by cryogenic 3d printing for repairing critical-sized bone defect, Molecules 2019; 24 (9):1–20 doi: 10.3390/molecules24091669 DOI: https://doi.org/10.3390/molecules24091669

Lagoa, A., Wedemeyer, C., M. von Knoch, Löer, F., and Epple, M. A strut graft substitute consisting of a metal core and a polymer surface, Journal of Materials Science: Materials in Medicine 2008; 19 (1): 417–24 DOI: 10.1007/s10856-006-0022-0 DOI: https://doi.org/10.1007/s10856-006-0022-0

Higashi, S., T. Yamamuro, T. Nakamura, Y. Ikada, S. Hyon and K. Jamshidi Polymer-hydroxyapatite composites for biodegradable bone fillers, Biomaterials 1986; 7 (3): 183–87 DOI: 10.1016/0142-9612(86)90099-2 DOI: https://doi.org/10.1016/0142-9612(86)90099-2

Chen, J. and Chang Y. Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells, Colloids and surfaces B, Biointerfaces 2011, 86 (1): 167–75 DOI: 10.1016/j.colsurfb.2011.03.038 DOI: https://doi.org/10.1016/j.colsurfb.2011.03.038

Zhang, B., Wang, L., Song, P., Pei, X., Sun, H., Wu, L., Zhou, C., Wang, K., Fan, Y., and Zhang, X. 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations, Materials & Design 2021; 201: 109490 https://doi.org/10.1016/j.matdes.2021.109490 DOI: https://doi.org/10.1016/j.matdes.2021.109490

Wu, Y., Shaw, S., Lin, H., Lee, T., and Yang, C. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds, Biomaterials 2006; 27 (6): 896–904 DOI: 10.1016/j.biomaterials.2005.07.002 DOI: https://doi.org/10.1016/j.biomaterials.2005.07.002

Zhang, S., Chen, L., Jiang, Y., Cai, Y., Xu, G., and Tong T. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration’, Acta Biomaterialia 2013; 9 (7): 7236–47 DOI: 10.1016/j.actbio.2013.04.003 DOI: https://doi.org/10.1016/j.actbio.2013.04.003

Xiong, Z., Cui, W., Sun, T., Teng, Y., Qu, Y., Yang, L., Zhou, J., Chen, K., Yao S., and Guo, X. Sustained delivery of PlGF-2123-144*-fused BMP2-related peptide P28 from small intestinal submucosa/polylacticacid scaffold material for bone tissue regeneration, RSC Advances 2020; 10 (12): 7289–7300 doi: 10.1039/c9ra07868a DOI: https://doi.org/10.1039/C9RA07868A

Narayanan, G., Vernekar, V., Kuyinu, E. and Laurencin, C. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering, Advanced Drug Delivery Reviews 2016; 107: 247–276 doi: 10.1016/j.addr.2016.04.015 DOI: https://doi.org/10.1016/j.addr.2016.04.015

Prasad, A. State of art review on bioabsorbable polymeric scaffolds for bone tissue engineering, Materials Today: Proceedings 2021, 44: 1391–1400 DOI:10.1016/j.matpr.2020.11.622 DOI: https://doi.org/10.1016/j.matpr.2020.11.622

Zimmer Biomet (2019), Lactosorb® resorbable fixation system, available at https://www.zimmerbiomet.eu/en/products-and-solutions/specialties/cmf/lactosorb-resorb able-fixation-system.html

Corona, B. and Greising S. Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration, Biomaterials 2016; 104: 238–46 DOI: 10.1016/j.biomaterials.2016.07.020 DOI: https://doi.org/10.1016/j.biomaterials.2016.07.020

Wang, Y. and Rudnicki M. Satellite cells, the engines of muscle repair, Nature Reviews Molecular Cell Biology 2012; 13 (2): 127–33 DOI: 10.1038/nrm3265 DOI: https://doi.org/10.1038/nrm3265

Rizzi, R., Bearzi, C., Mauretti, A., Bernardini, S., Cannata, S., and Gargioli, C. Tissue engineering for skeletal muscle regeneration, Muscles Ligaments Tendons Journal 2012; 2 (3): 230–34 PMCID: PMC3666528

Gentile, N., Stearns, K., Brown, E., Rubin, J. Boninger, M., and Dearth, C. Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss, American Journal of Physical Medicine & Rehabilitation 2014; 93 (11): 79–87 DOI: 10.1097/PHM.0000000000000145 DOI: https://doi.org/10.1097/PHM.0000000000000145

Mase, VJ, Hsu, J., Wolf, S., Wenke, J., Baer, D., and Owens J. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect, Orthopedics 2010; 33 (7): 1–20 DOI: 10.3928/01477447-20100526-24 DOI: https://doi.org/10.3928/01477447-20100526-24

Dong, R., Ma, P., and Guo, B. Conductive biomaterials for muscle tissue engineering, Biomaterials 2020; 229: 1–20 DOI: 10.1016/j.biomaterials.2019.119584 DOI: https://doi.org/10.1016/j.biomaterials.2019.119584

Chen, C., Bai, X., Ding, Y., and Lee, I. S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering’, Biomaterials Research 2019; 23 (25): 1–12 doi: 10.1186/s40824-019-0176-8 DOI: https://doi.org/10.1186/s40824-019-0176-8

Jun, I., Jeong, S., and Shin H. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers, Biomaterials 2009; 30 (11): 2038–47 DOI: 10.1016/j.biomaterials.2008.12.063 DOI: https://doi.org/10.1016/j.biomaterials.2008.12.063

He G., Dahl T., Veis A., George A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nature materials 2003; 2 (8): 552-8. DOI: 10.1038/nmat945 DOI: https://doi.org/10.1038/nmat945

Lutolf M., Weber F., Schmoekel H., Schense J., Kohler T., Müller R., Hubbell J. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol. 2003; 21(5): 513-8. DOI: 10.1038/nbt818 DOI: https://doi.org/10.1038/nbt818

Downloads

Published

2022-09-30

How to Cite

1.
Tawade P, Tondapurkar N, Jangale A. Biodegradable and biocompatible synthetic polymers for applications in bone and muscle tissue engineering. JMS [Internet]. 2022 Sep. 30 [cited 2024 Jul. 3];91(3):e712. Available from: https://jms.ump.edu.pl/index.php/JMS/article/view/712

Issue

Section

Review Papers
Received 2022-07-27
Accepted 2022-10-09
Published 2022-09-30