Rare occurrence of type 2 diabetes mellitus in patients with sickle cell anaemia: assessing the contribution of inflammation, insulin resistance and glucose buffering capacity of abnormal haemoglobin





Endocrinopathy, Haemoglobinopathy, Pharmacotherapy, Sickle cell anaemia, Type 2 diabetes mellitus, MicroRNA


This review was designed to discuss the rare occurrence of diabetes mellitus (DM) in patients with sickle cell anaemia (SCA) with a particular focus on factors, such as life expectancy, body weight, chronic inflammation, insulin resistance, glucose buffering property of haemoglobin, and microRNAs (miRNAs), aiming to stimulate research which will fill the existing knowledge gaps regarding the interplay between SCA and DM. Additionally, possible pharmacotherapeutic approaches to DM were also highlighted in the review. Google Scholar and PubMed search engines were used to search for the relevant keywords, such as sickle cell trait, sickle cell disease, sickle cell anaemia, insulin resistance, and diabetes mellitus. SCA patients appear to have β-cell dysfunction with a reduced insulin secretion, but present a similar insulin sensitivity status as other patients without haemoglobinopathy. Glucose buffering property of haemoglobin and the possible DM-protective roles of miRNAs in the sickled erythrocytes constitute some of the potential factors protecting SCA patients from developing DM. Sickle cell anaemia is associated with several complications and endocrinopathies, nevertheless, its coexistence with DM continues to be a rare observation. Proper elucidation of the mechanisms which seemingly confer ‘protection’ against DM in patients with SCA may provide some therapeutic insights regarding DM.


Download data is not yet available.


Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S14-s31. DOI: 10.2337/dc20-S002.

Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782-7. DOI: 10.1038/414782a.

Jang T, Mo G, Stewart C, Khoury L, Ferguson N, Egini O, et al. Obesity and diabetes mellitus in patients with sickle cell disease. 2021;100(9):2203-5. DOI: 10.1007/s00277-021-04578-w.

Pecker LH, Lanzkron S. Sickle Cell Disease. Ann Intern Med. 2021;174(1):Itc1-itc16. DOI: 10.7326/aitc202101190.

Akinbami A, Dosunmu A, Adediran A, Oshinaike O, Adebola P, Arogundade O. Haematological values in homozygous sickle cell disease in steady state and haemoglobin phenotypes AA controls in Lagos, Nigeria. BMC Res Notes. 2012;5:396. DOI: 10.1186/1756-0500-5-396.

Dasgupta A, Wahed A. Clinical chemistry, immunology and laboratory quality control: a comprehensive review for board preparation, certification and clinical practice: Academic Press; 2013.

Alenzi FQ, AlShaya DS. Biochemical and Molecular analysis of the beta-globin gene on Saudi sickle cell anemia. Saudi J Biol Sci. 2019;26(7):1377-84. DOI: 10.1016/j.sjbs.2019.03.003.

el-Hazmi MA, Bahakim HM, al-Fawaz I. Endocrine functions in sickle cell anaemia patients. J Trop Pediatr. 1992;38(6):307-13. DOI: 10.1093/tropej/38.6.307.

Abbiyesuku FM, Osotimehin BO. Anterior pituitary gland assessment in sickle cell anaemia patients with delayed menarche. Afr J Med Med Sci. 1999;28(1-2):65-9.

Smiley D, Dagogo-Jack S, Umpierrez G. Therapy insight: metabolic and endocrine disorders in sickle cell disease. Nat Clin Pract Endocrinol Metab. 2008;4(2):102-9. DOI: 10.1038/ncpendmet0702.

Olaniyi J, Akinlade K, Atere A, Arinola O. Serum iron status and haematological profiles in adult Nigerian sickle cell anaemia patients. International Journal of Tropical Disease and Health. 2014;4(8):917-27.

Bolarinwa R, Akinlade K, Kuti M, Olawale O, Akinola N. Renal disease in adult Nigerians with sickle cell anemia: a report of prevalence, clinical features and risk factors. Saudi Journal of Kidney Diseases and Transplantation. 2012;23(1):171.

Prusty B, Soren T, Choudhury A, Biswal R, Pradhan DK, Thatoi PK. Sickle cell disease prevents diabetes mellitus occurrence: A hospital based cross-sectional study. J Family Med Prim Care. 2019;8(2):361-4. DOI: 10.4103/jfmpc.jfmpc_466_18.

Skinner S, Pialoux V, Fromy B, Sigaudo-Roussel D, Connes P. Sickle-cell trait and diagnosis of type 2 diabetes. Lancet Diabetes Endocrinol. 2018;6(11):840-3. DOI: 10.1016/s2213-8587(18)30033-0.

Mohamed AA, Al-Qurashi F, Whitford DL. Does Sickle Cell Disease Protect Against Diabetes Mellitus?: Cross-sectional study. Sultan Qaboos Univ Med J. 2015;15(1):e116-9.

Akinlade KS, Kumuyi AS, Rahamon SK, Olaniyi JA. Insulin Sensitivity, Inflammation, and Basal Metabolic Rate in Adults with Sickle Cell Anemia. Int J Appl Basic Med Res. 2018;8(2):106-10. DOI: 10.4103/ijabmr.IJABMR_96_17.

Akinlade KS, Adewale CO, Rahamon SK, Fasola FA, Olaniyi JA, Atere AD. Defective lipid metabolism in sickle cell anaemia subjects in vaso-occlusive crisis. Nigerian medical journal: journal of the Nigeria Medical Association. 2014;55(5):428.

Hundekar PS, Suryakar A, Karnik A, Ghone R, Bhagat S. A study of serum iron level and oxidative stress in the steady state of sickle cell of anaemia. Age. 2017;15(50):15-50.

Zhou J, Han J, Nutescu EA, Galanter WL, Walton SM, Gordeuk VR, et al. Similar burden of type 2 diabetes among adult patients with sickle cell disease relative to African Americans in the U.S. population: a six-year population-based cohort analysis. Br J Haematol. 2019;185(1):116-27. DOI: 10.1111/bjh.15773.

Skinner SC, Diaw M, Pialoux V, Mbaye MN, Mury P, Lopez P, et al. Increased Prevalence of Type 2 Diabetes-Related Complications in Combined Type 2 Diabetes and Sickle Cell Trait. Diabetes Care. 2018;41(12):2595-602. DOI: 10.2337/dc18-1289.

Morrison JC, Schneider JM, Kraus AP, Kitabchi AE. The prevalence of diabetes mellitus in sickle cell hemoglobinopathies. J Clin Endocrinol Metab. 1979;48(2):192-5. DOI: 10.1210/jcem-48-2-192.

Miodovnik M, Hurd WW, Lobel JS, Siddiqi TA. Pregnancy associated with both insulin-dependent diabetes mellitus and sickle cell disease. A report of two cases. J Reprod Med. 1987;32(4):317-9.

Fung EB, Harmatz PR, Lee PD, Milet M, Bellevue R, Jeng MR, et al. Increased prevalence of iron-overload associated endocrinopathy in thalassaemia versus sickle-cell disease. Br J Haematol. 2006;135(4):574-82. DOI: 10.1111/j.1365-2141.2006.06332.x.

Reid HL, Photiades DP, Oli JM, Kaine W. Concurrent sickle cell disease and diabetes mellitus. Trop Geogr Med. 1988;40(3):201-4.

Reid HL, Ene MD, Photiades DP, Famodu AA. Insulin-dependent diabetes mellitus in homozygous sickle-cell anaemia. Trop Geogr Med. 1990;42(2):172-3.

Adekile AD, Jegende AO. Juvenile-onset diabetes mellitus in a sickle cell anaemia patient. East Afr Med J. 1990;67(8):591-3.

Kosecki SM, Rodgers PT, Adams MB. Glycemic monitoring in diabetics with sickle cell plus beta-thalassemia hemoglobinopathy. Ann Pharmacother. 2005;39(9):1557-60. DOI: 10.1345/aph.1G010.

Mohapatra MK. Type 1 diabetes mellitus in homozygous sickle cell anaemia. J Assoc Physicians India. 2005;53:895-6.

Jarrett OO, Olorundare EI. Type 1 diabetes mellitus in a known sickle cell anaemia patient: a rare combination in Nigeria. Afr J Med Med Sci. 2014;43(2):177-81.

Lacy ME, Wellenius GA, Sumner AE, Correa A, Carnethon MR, Liem RI, et al. Association of Sickle Cell Trait With Hemoglobin A1c in African Americans. Jama. 2017;317(5):507-15. DOI: 10.1001/jama.2016.21035.

Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2002;48(3):436-72.

Klonoff DC. Hemoglobinopathies and Hemoglobin A1c in Diabetes Mellitus. J Diabetes Sci Technol. 2020;14(1):3-7. DOI: 10.1177/1932296819841698.

Smaldone A. Glycemic control and hemoglobinopathy: when A1C may not be reliable. Diabetes spectrum. 2008;21(1):46-9.

Little RR, Roberts WL. A review of variant hemoglobins interfering with hemoglobin A1c measurement. J Diabetes Sci Technol. 2009;3(3):446-51. DOI: 10.1177/193229680900300307.

Lippi G, Plebani M. Capillary electrophoresis for the screening and diagnosis of inherited hemoglobin disorders. Ready for prime time? Clin Chem Lab Med. 2016;54(1):5-6. DOI: 10.1515/cclm-2015-0545.

Parrinello CM, Selvin E. Beyond HbA1c and glucose: the role of nontraditional glycemic markers in diabetes diagnosis, prognosis, and management. Curr Diab Rep. 2014;14(11):548. DOI: 10.1007/s11892-014-0548-3.

Doumatey AP, Feron H, Ekoru K, Zhou J, Adeyemo A, Rotimi CN. Serum fructosamine and glycemic status in the presence of the sickle cell mutation. Diabetes Res Clin Pract. 2021;177:108918. DOI: 10.1016/j.diabres.2021.108918.

Skinner S, Diaw M, Ndour Mbaye M, Joly P, Renoux C, Masson C, et al. Evaluation of agreement between hemoglobin A1c, fasting glucose, and fructosamine in Senegalese individuals with and without sickle-cell trait. PLoS One. 2019;14(2):e0212552. DOI: 10.1371/journal.pone.0212552.

Lanzkron S, Carroll CP, Haywood C, Jr. Mortality rates and age at death from sickle cell disease: U.S., 1979-2005. Public Health Rep. 2013;128(2):110-6. DOI: 10.1177/003335491312800206.

Abraham A, Jacobsohn DA, Bollard CM. Cellular therapy for sickle cell disease. Cytotherapy. 2016;18(11):1360-9. DOI: 10.1016/j.jcyt.2016.06.011.

Ballas SK, Pulte ED, Lobo C, Riddick-Burden G. Case series of octogenarians with sickle cell disease. Blood. 2016;128(19):2367-9. DOI: 10.1182/blood-2016-05-715946.

Esezobor CI, Akintan P, Akinsulie A, Temiye E, Adeyemo T. Wasting and stunting are still prevalent in children with sickle cell anaemia in Lagos, Nigeria. Ital J Pediatr. 2016;42(1):45. DOI: 10.1186/s13052-016-0257-4.

Aljada A, Ghanim H, Mohanty P, Kapur N, Dandona P. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab. 2002;87(3):1419-22. DOI: 10.1210/jcem.87.3.8462.

Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005;111(11):1448-54. DOI: 10.1161/01.cir.0000158483.13093.9d.

Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab. 2001;86(7):3257-65. DOI: 10.1210/jcem.86.7.7623.

Mendelson S. Metabolic syndrome and psychiatric illness. Interactions, Pathophysiology, Assessment & Treatment. 2008.

Alsultan AI, Seif MA, Amin TT, Naboli M, Alsuliman AM. Relationship between oxidative stress, ferritin and insulin resistance in sickle cell disease. Eur Rev Med Pharmacol Sci. 2010;14(6):527-38.

ter Maaten JC, Serné EH, Bakker SJ, van Eps WS, Donker AJ, Gans RO. Effects of insulin on glucose uptake and leg blood flow in patients with sickle cell disease and normal subjects. Metabolism. 2001;50(4):387-92. DOI: 10.1053/meta.2001.21681.

Akinlade K, Adewale C, Fasola F, Rahamon S, Dada V. Indices of insulin sensitivity and oral disposition index in adult Nigerians with sickle cell anaemia: A pilot study. Journal of Advances in Medicine and Medical Research. 2014:4972-81.

Yavropoulou MP, Pikilidou M, Pantelidou D, Tsalikakis DG, Mousiolis A, Chalkia P, et al. Insulin Secretion and Resistance in Normoglycemic Patients with Sickle Cell Disease. Hemoglobin. 2017;41(1):6-11. DOI: 10.1080/03630269.2017.1295983.

Akinlade KS, Atere AD, Olaniyi JA, Rahamon SK, Adewale CO. Serum copeptin and cortisol do not accurately predict sickle cell anaemia vaso-occlusive crisis as C-reactive protein. PLoS One. 2013;8(11):e77913. DOI: 10.1371/journal.pone.0077913.

Eke CB, Chukwu BF, Ikefuna AN, Ezenwosu OU, Emodi IJ. Bioelectric impedance analysis of body composition of children and adolescents with sickle cell anemia in Enugu, Nigeria. Pediatr Hematol Oncol. 2015;32(4):258-68. DOI: 10.3109/08880018.2015.1010111.

Woods KF, Ramsey LT, Callahan LA, Mensah GA, Litaker MS, Kutlar A, et al. Body composition in women with sickle cell disease. Ethn Dis. 2001;11(1):30-5.

Akodu SO, Diaku-Akinwumi IN, Njokanma OF. Obesity--does it occur in Nigerian children with sickle cell anemia. Pediatr Hematol Oncol. 2012;29(4):358-64. DOI: 10.3109/08880018.2012.680682.

Chawla A, Sprinz PG, Welch J, Heeney M, Usmani N, Pashankar F, et al. Weight status of children with sickle cell disease. Pediatrics. 2013;131(4):e1168-73. DOI: 10.1542/peds.2012-2225.

Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J Clin Endocrinol Metab. 2011;96(6):1654-63. DOI: 10.1210/jc.2011-0585.

Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111-7. DOI: 10.1172/jci57132.

Oh DY, Olefsky JM. G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat Rev Drug Discov. 2016;15(3):161-72. DOI: 10.1038/nrd.2015.4.

Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes. 2014;7:587-91. DOI: 10.2147/dmso.s67400.

Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017;23(7):804-14. DOI: 10.1038/nm.4350.

Lawrence T, Gilroy DW. Chronic inflammation: a failure of resolution? Int J Exp Pathol. 2007;88(2):85-94. DOI: 10.1111/j.1365-2613.2006.00507.x.

Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428-35. DOI: 10.1038/nature07201.

Raphael RI. Pathophysiology and treatment of sickle cell disease. Clin Adv Hematol Oncol. 2005;3(6):492-505.

Akinlade KS, Atere AD, Rahamon SK, Olaniyi JA. Serum levels of copeptin, C-reactive protein and cortisol in different severity groups of sickle cell anaemia. Niger J Physiol Sci. 2013;28(2):159-64.

Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-7. DOI: 10.1038/nature05485.

Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87-91. DOI: 10.1126/science.7678183.

Kalupahana NS, Moustaid-Moussa N, Claycombe KJ. Immunity as a link between obesity and insulin resistance. Mol Aspects Med. 2012;33(1):26-34. DOI: 10.1016/j.mam.2011.10.011.

Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219-46. DOI: 10.1146/annurev-physiol-021909-135846.

Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11(2):183-90. DOI: 10.1038/nm1166.

Akohoue SA, Shankar S, Milne GL, Morrow J, Chen KY, Ajayi WU, et al. Energy expenditure, inflammation, and oxidative stress in steady-state adolescents with sickle cell anemia. Pediatr Res. 2007;61(2):233-8. DOI: 10.1203/pdr.0b013e31802d7754.

Krishnan S, Setty Y, Betal SG, Vijender V, Rao K, Dampier C, et al. Increased levels of the inflammatory biomarker C-reactive protein at baseline are associated with childhood sickle cell vasocclusive crises. Br J Haematol. 2010;148(5):797-804. DOI: 10.1111/j.1365-2141.2009.08013.x.

Mohammed FA, Mahdi N, Sater MA, Al-Ola K, Almawi WY. The relation of C-reactive protein to vasoocclusive crisis in children with sickle cell disease. Blood Cells Mol Dis. 2010;45(4):293-6. DOI: 10.1016/j.bcmd.2010.08.003.

Al Harbi M, Khandekar R, Kozak I, Schatz P. Association between Sickle Cell Trait and the Prevalence and Severity of Diabetic Retinopathy. PLoS One. 2016;11(7):e0159215. DOI: 10.1371/journal.pone.0159215.

Lee BS, Jayathilaka GD, Huang JS, Vida LN, Honig GR, Gupta S. Analyses of in vitro nonenzymatic glycation of normal and variant hemoglobins by MALDI-TOF mass spectrometry. J Biomol Tech. 2011;22(3):90-4.

O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;9:402. DOI: 10.3389/fendo.2018.00402.

Bottini S, Hamouda-Tekaya N, Mategot R, Zaragosi LE, Audebert S, Pisano S, et al. Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat Commun. 2017;8(1):1189. DOI: 10.1038/s41467-017-01126-x.

Pitchiaya S, Heinicke LA, Park JI, Cameron EL, Walter NG. Resolving Subcellular miRNA Trafficking and Turnover at Single-Molecule Resolution. Cell Rep. 2017;19(3):630-42. DOI: 10.1016/j.celrep.2017.03.075.

Akpan OU, Okon AE. Relationship between Haemoglobin Genotype, Incidence of Diabetes Mellitus and Some Clinical Complications in Southern Nigeria Tertiary Health Institutions. IOSR-JDMS.16(1):88-92. DOI: DOI: 10.9790/0853-1601028892.

LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012;12(2):187-99. DOI: 10.1016/j.chom.2012.06.007.

Lebo RV, Chakravarti A, Buetow KH, Cheung MC, Cann H, Cordell B, et al. Recombination within and between the human insulin and beta-globin gene loci. Proc Natl Acad Sci U S A. 1983;80(15):4808-12. DOI: 10.1073/pnas.80.15.4808.

How to Cite

Rahamon SK, Ogundeji SP, Olerimi SE, Akinlade KS. Rare occurrence of type 2 diabetes mellitus in patients with sickle cell anaemia: assessing the contribution of inflammation, insulin resistance and glucose buffering capacity of abnormal haemoglobin. JMS [Internet]. 2022 Mar. 31 [cited 2023 Jun. 5];91(1):e604. Available from: https://jms.ump.edu.pl/index.php/JMS/article/view/604



Review Papers
Received 2021-12-29
Accepted 2022-03-15
Published 2022-03-31