Asymmetric properties of heart rate microstructure
DOI:
https://doi.org/10.20883/medical.e436Keywords:
cardiovascular time series, heart rate asymmetry, heart rate variability, heart rate microstructure, risk predictionAbstract
The duration of each cardiac cycle is measured on an ECG as the distance between the peaks of consecutive R waves (RR interval), with the inverse value corresponding to the heart rate (HR) changing in a beat-to-beat manner. HR accelerations are reflected as shortenings of the RR intervals, HR decelerations as the lengthening of RR intervals. HR asymmetry is a physiological phenomenon caused by an unequal input of HR decelerations and accelerations to the HR variability. Naturally occurring consecutive values of RR intervals create a time series composed of acceleration and deceleration runs of differing lengths. For example, a single HR acceleration, a pair of HR decelerations, a run consisting of five consecutive HR decelerations or a run composed of eight accelerations in a row. These runs make up the so-called heart rate microstructure that has asymmetric properties due to the unequal contribution of acceleration and deceleration runs. The asymmetry of the HR microstructure is physiological in healthy individuals, however, the asymmetric properties can be significantly altered in some clinical conditions, such as myocardial infarction, obstructive sleep apnoea, chronic obturatory pulmonary disease or sepsis in infants. An abnormal HR microstructure has predictive value in survivors of myocardial infarction or patients with clinical indications for exercise treadmill stress test, e.g., for total mortality. In this review, we present and explain how the asymmetric properties of HR microstructure can be quantified, summarising the available data regarding the clinical and predictive value of this phenomenon and its analysis.
Downloads
References
Tomaselli GF, Rubart M, Zipes DP. Mechanisms of Cardiac Arrhythmias. In: Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. 10th Edition. Saunders; 2014:619-49.
Fedorov VV, Glukhov AV, Chang R, Kostecki G, Aferol H, Hucker WJ, Wuskell JP, Loew LM, Schuessler RB, Moazami N, Efimov IR. Optical Mapping of the Isolated Coronary-Perfused Human Sinus Node. Journal of the American College of Cardiology. 2010 Oct;56(17):1386-1394. https://doi.org/10.1016/j.jacc.2010.03.098
Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Frontiers in Psychology. 2014 Sep 30;5. https://doi.org/10.3389/fpsyg.2014.01040 PMID 25324790
Opthof T. The normal range and determinants of the intrinsic heart rate in man. Cardiovascular Research. 2000 Jan 1;45(1):177-184. https://doi.org/10.1016/s0008-6363(99)00322-3
Sanchez-Quintana D. Sinus node revisited in the era of electroanatomical mapping and catheter ablation. Heart. 2005 Feb 1;91(2):189-194. https://doi.org/10.1136/hrt.2003.031542
Moïse NS, Flanders WH, Pariaut R. Beat-to-Beat Patterning of Sinus Rhythm Reveals Non-linear Rhythm in the Dog Compared to the Human. Frontiers in Physiology. 2020 Jan 22;10. https://doi.org/10.3389/fphys.2019.01548 PMID 32038271
Boineau JP, Canavan TE, Schuessler RB, Cain ME, Corr PB, Cox JL. Demonstration of a widely distributed atrial pacemaker complex in the human heart.. Circulation. 1988 Jun;77(6):1221-1237. https://doi.org/10.1161/01.cir.77.6.1221
Ho SY, Sánchez-Quintana D. Anatomy and pathology of the sinus node. Journal of Interventional Cardiac Electrophysiology. 2015 Aug 30;46(1):3-8. https://doi.org/10.1007/s10840-015-0049-6
Peters CH, Sharpe EJ, Proenza C. Cardiac Pacemaker Activity and Aging. Annual Review of Physiology. 2020 Feb 10;82(1):21-43. https://doi.org/10.1146/annurev-physiol-021119-034453
Boyett M. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovascular Research. 2000 Sep;47(4):658-687. https://doi.org/10.1016/s0008-6363(00)00135-8
John RM, Kumar S. Sinus Node and Atrial Arrhythmias. Circulation. 2016 May 10;133(19):1892-1900. https://doi.org/10.1161/circulationaha.116.018011
Electrophysiology TFOTES. Heart Rate Variability. Circulation. 1996 Mar;93(5):1043-1065. https://doi.org/10.1161/01.cir.93.5.1043
Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng C, Schmidt G, Yamamoto Y, Gorenek B, Lip GY, Grassi G, Kudaiberdieva G, Fisher JP, Zabel M, Macfadyen R. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015 Jul 14;17(9):1341-1353. https://doi.org/10.1093/europace/euv015
Berntson GG, Cacioppo JT, Quigley KS. Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology. 1993 Mar;30(2):183-196. https://doi.org/10.1111/j.1469-8986.1993.tb01731.x
Piskorski J, Guzik P, Krauze T, Żurek S. Cardiopulmonary resonance at 0.1 Hz demonstrated by averaged Lomb-Scargle periodogram. Open Physics. 2010 Jan 1;8(3). https://doi.org/10.2478/s11534-009-0101-1
Guzik P, Piskorski J, Krauze T, Wykretowicz A, Wysocki H. Heart rate asymmetry by Poincaré plots of RR intervals. Biomedizinische Technik/Biomedical Engineering. 2006 Oct;51(4):272-275. https://doi.org/10.1515/bmt.2006.054
Piskorski J, Guzik P. Geometry of the Poincaré plot ofRRintervals and its asymmetry in healthy adults. Physiological Measurement. 2007 Feb 19;28(3):287-300. https://doi.org/10.1088/0967-3334/28/3/005
Guzik P, Piskorski J, Krauze T, Wykretowicz A, Wysocki H. Partitioning total heart rate variability. International Journal of Cardiology. 2010 Sep;144(1):138-139. https://doi.org/10.1016/j.ijcard.2008.12.151
Piskorski J, Guzik P. Asymmetric properties of long-term and total heart rate variability. Medical & Biological Engineering & Computing. 2011 Sep 28;49(11):1289-1297. https://doi.org/10.1007/s11517-011-0834-z
Piskorski J, Guzik P. The structure of heart rate asymmetry: deceleration and acceleration runs. Physiological Measurement. 2011 Jun 7;32(8):1011-1023. https://doi.org/10.1088/0967-3334/32/8/002
Piskorski J, Guzik P. Compensatory properties of heart rate asymmetry. Journal of Electrocardiology. 2012 May;45(3):220-224. https://doi.org/10.1016/j.jelectrocard.2012.02.001
Mieszkowski D, Kośmider M, Krauze T, Guzik P, Piskorski J. Asymmetric detrended fluctuation analysis reveals asymmetry in the RR intervals time series. Journal of Applied Mathematics and Computational Mechanics. 2016 Mar;15(1):99-106. https://doi.org/10.17512/jamcm.2016.1.10
Piskorski J, Kosmider M, Mieszkowski D, Krauze T, Wykretowicz A, Guzik P. Properties of Asymmetric Detrended Fluctuation Analysis in the time series of RR intervals. Physica A: Statistical Mechanics and its Applications. 2018 Feb;491:347-360. https://doi.org/10.1016/j.physa.2017.09.057
Piskorski J, Ellert J, Krauze T, Grabowski W, Wykretowicz A, Guzik P. Testing heart rate asymmetry in long, nonstationary 24 hour RR-interval time series. Physiological Measurement. 2019 Oct 30;40(10):105001. https://doi.org/10.1088/1361-6579/ab42d5
Piskorski J. Struktura asymetrii rytmu serca (Structure of heart rate asymmetry). Poznań: Wydawnictwo Naukowe; 2011.
Guzik P, Piskorski J, Barthel P, Bauer A, Müller A, Junk N, Ulm K, Malik M, Schmidt G. Heart rate deceleration runs for postinfarction risk prediction. Journal of Electrocardiology. 2012 Jan;45(1):70-76. https://doi.org/10.1016/j.jelectrocard.2011.08.006
Guzik P, Nieminen T, Piskorski J, Kaiser W, Viik J, Nikus K, Lehtinen R, Lehtimäki T, Kähönen M. Increased rate of fast-changing microstructure of heart rate asymmetry predicts mortality in patients undergoing a clinically indicated exercise test. Cardiol. J. 2011;18:593.
Billois R, Porée F, Beuchée A, Carrault G. Interest of RR deceleration for diagnosis of late onset sepsis. In: IEEE Computing in Cardiology. Kraków; 2012:633-6.
Fleming S, Thompson M, Stevens R, Heneghan C, Plüddemann A, Maconochie I, Tarassenko L, Mant D. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. The Lancet. 2011 Mar;377(9770):1011-1018. https://doi.org/10.1016/s0140-6736(10)62226-x PMID 21411136
Baruteau A, Perry JC, Sanatani S, Horie M, Dubin AM. Evaluation and management of bradycardia in neonates and children. European Journal of Pediatrics. 2016 Jan 16;175(2):151-161. https://doi.org/10.1007/s00431-015-2689-z
Guzik P, Piskorski J, Awan K, Krauze T, Fitzpatrick M, Baranchuk A. Obstructive sleep apnea and heart rate asymmetry microstructure during sleep. Clinical Autonomic Research. 2013 Jan 24;23(2):91-100. https://doi.org/10.1007/s10286-013-0188-8
Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW, García FAR, Herzstein J, Kemper AR, Krist AH, Kurth AE, Landefeld CS, Mangione CM, Phillips WR, Phipps MG, Pignone MP, Silverstein M, Tseng C. Screening for Obstructive Sleep Apnea in Adults. JAMA. 2017 Jan 24;317(4):407. https://doi.org/10.1001/jama.2016.20325
Parati G, Lombardi C, Hedner J, Bonsignore MR, Grote L, Tkacova R, Levy P, Riha R, Bassetti C, Narkiewicz K, Mancia G, McNicholas WT. Position paper on the management of patients with obstructive sleep apnea and hypertension. Journal of Hypertension. 2012 Apr;30(4):633-646. https://doi.org/10.1097/hjh.0b013e328350e53b
Jiang J, Chen X, Zhang C, Wang G, Fang J, Ma J, Zhang J. Heart rate acceleration runs and deceleration runs in patients with obstructive sleep apnea syndrome. Sleep and Breathing. 2016 Nov 23;21(2):443-451. https://doi.org/10.1007/s11325-016-1437-6
Kong Z, Wang X, Shen S, Liu H, Zhou L, Chen B, Chen Z, Yin S. Risk Prediction for Arrhythmias by Heart Rate Deceleration Runs in Patients with Chronic Obstructive Pulmonary Disease. International Journal of Chronic Obstructive Pulmonary Disease. 2020 Mar;Volume 15:585-593. https://doi.org/10.2147/copd.s234470
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Przemyslaw Guzik, Jarosław Piskorski
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Accepted 2020-06-21
Published 2020-06-30