The role of STAT3 in the colorectal cancer therapy
DOI:
https://doi.org/10.20883/medical.e427Keywords:
STAT3, colorectal cancer, kinase JAK, SOCS proteinsAbstract
Colorectal cancer is a malignant tumour of the digestive system, more common in the elderly than in younger individuals. The incidence rate in the United States and the European Union is increasing by an average of 4.2% to 4.6% annually. There is emerging evidence that deregulation of the signalling pathway and abnormal expression and activation of genes is the main reason for the development of colorectal cancer. Signal transducer and activator of transcription (STAT3) is a transcription factor of signal transduction and transcriptional activation of target genes which plays important roles in proliferation, differentiation, apoptosis and other physiological processes. It has been confirmed that abnormal activation of STAT3 is involved in the development of tumours, so the identification of STAT3 inhibitors is a promising strategy for cancer chemoprevention and treatment of colorectal cancer. In this review, the roles of STAT3 in the pathogenesis and treatment of colorectal cancer are discussed.
Downloads
References
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. The Lancet. 2019 Oct;394(10207):1467-1480. https://doi.org/10.1016/s0140-6736(19)32319-0
Ji K, Zhang M, Chu Q, Gan Y, Ren H, Zhang L, Wang L, Li X, Wang W. The Role of p-STAT3 as a Prognostic and Clinicopathological Marker in Colorectal Cancer: A Systematic Review and Meta-Analysis. Shi X. PLOS ONE. 2016 Aug 9;11(8):e0160125. https://doi.org/10.1371/journal.pone.0160125
Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun;61(5):759-767. https://doi.org/10.1016/0092-8674(90)90186-i
Wake MS, Watson CJ. STAT3 the oncogene - still eluding therapy?. FEBS Journal. 2015 Apr 22;282(14):2600-2611. https://doi.org/10.1111/febs.13285
Laudisi F, Cherubini F, Di Grazia A, Dinallo V, Di Fusco D, Franzè E, Ortenzi A, Salvatori I, Scaricamazza S, Monteleone I, Sakamoto N, Monteleone G, Stolfi C. Progranulin sustains STAT 3 hyper‐activation and oncogenic function in colorectal cancer cells. Molecular Oncology. 2019 Aug 10;13(10):2142-2159. https://doi.org/10.1002/1878-0261.12552
Xiong A, Yang Z, Shen Y, Zhou J, Shen Q. Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention. Cancers. 2014 Apr 16;6(2):926-957. https://doi.org/10.3390/cancers6020926
Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nature Reviews Cancer. 2014 Oct 24;14(11):736-746. https://doi.org/10.1038/nrc3818
Grivennikov SI, Greten FR, Karin M. Immunity, Inflammation, and Cancer. Cell. 2010 Mar;140(6):883-899. https://doi.org/10.1016/j.cell.2010.01.025
Shi Y, Zhang Z, Qu X, Zhu X, Zhao L, Wei R, Guo Q, Sun L, Yin X, Zhang Y, Li X. Roles of STAT3 in leukemia (Review). International Journal of Oncology. 2018 Apr 30;. https://doi.org/10.3892/ijo.2018.4386
Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, Ma H, Wei D, Sun S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. International Immunopharmacology. 2020 Mar;80:106210. https://doi.org/10.1016/j.intimp.2020.106210
Pilati C, Zucman-Rossi J. Mutations leading to constitutive active gp130/JAK1/STAT3 pathway. Cytokine & Growth Factor Reviews. 2015 Oct;26(5):499-506. https://doi.org/10.1016/j.cytogfr.2015.07.010
Bournazou E, Bromberg J. Targeting the tumor microenvironment. JAK-STAT. 2013 Apr;2(2):e23828. https://doi.org/10.4161/jkst.23828
Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene. 2000 May;19(21):2474-2488. https://doi.org/10.1038/sj.onc.1203527
Kim B, Yi EH, Ye S. Signal transducer and activator of transcription 3 as a therapeutic target for cancer and the tumor microenvironment. Archives of Pharmacal Research. 2016 Aug;39(8):1085-1099. https://doi.org/10.1007/s12272-016-0795-8
Monique C T, Alister C W. SOCS proteins in development and disease. Am J Clin Exp Immunol. 2013 Feb 27;2(1):1-29. PMID 23885323
Shuai K. Regulation of cytokine signaling pathways by PIAS proteins. Cell Research. 2006 Feb;16(2):196-202. https://doi.org/10.1038/sj.cr.7310027
Horiguchi A, Oya M, Marumo K, Murai M. STAT3, but not ERKs, mediates the IL-6–induced proliferation of renal cancer cells, ACHN and 769P. Kidney International. 2002 Mar;61(3):926-938. https://doi.org/10.1046/j.1523-1755.2002.00206.x
Corvinus FM, Orth C, Moriggl R, Tsareva SA, Wagner S, Pfitzner EB, Baus D, Kaufman R, Huber LA, Zatloukal K, Beug H, Öhlschläger P, Schütz A, Halbhuber K, Friedrich K. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth. Neoplasia. 2005 Jun;7(6):545-555. https://doi.org/10.1593/neo.04571
Lin L, Liu A, Peng Z, Lin H, Li P, Li C, Lin J. STAT3 Is Necessary for Proliferation and Survival in Colon Cancer-Initiating Cells. Cancer Research. 2011 Sep 7;71(23):7226-7237. https://doi.org/10.1158/0008-5472.can-10-4660
Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernández-Luna JL, Nuñez G, Dalton WS, Jove R. Constitutive Activation of Stat3 Signaling Confers Resistance to Apoptosis in Human U266 Myeloma Cells. Immunity. 1999 Jan;10(1):105-115. https://doi.org/10.1016/s1074-7613(00)80011-4
Epling-Burnette P, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, Li Y, Wang J, Yang-Yen H, Karras J, Jove R, Loughran TP. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. Journal of Clinical Investigation. 2001 Feb 1;107(3):351-362. https://doi.org/10.1172/jci9940
Lee H, Jeong AJ, Ye S. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Reports. 2019 Jul 31;52(7):415-423. https://doi.org/10.5483/bmbrep.2019.52.7.152
Tang S, Yuan X, Song J, Chen Y, Tan X, Li Q. Association analyses of the JAK/STAT signaling pathway with the progression and prognosis of colon cancer. Oncology Letters. 2018 Oct 12;. https://doi.org/10.3892/ol.2018.9569
Said A, Raufman J, Xie G. The Role of Matrix Metalloproteinases in Colorectal Cancer. Cancers. 2014 Feb 10;6(1):366-375. https://doi.org/10.3390/cancers6010366
Dragutinović VV, Radonjić NV, Petronijević ND, Tatić SB, Dimitrijević IB, Radovanović NS, Krivokapić ZV. Matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in preoperative serum as independent prognostic markers in patients with colorectal cancer. Molecular and Cellular Biochemistry. 2011 May 4;355(1-2):173-178. https://doi.org/10.1007/s11010-011-0851-0
Kryczka J, Stasiak M, Dziki L, Mik M, Dziki A, Cierniewski CS. Matrix Metalloproteinase-2 Cleavage of the β1 Integrin Ectodomain Facilitates Colon Cancer Cell Motility. Journal of Biological Chemistry. 2012 Aug 16;287(43):36556-36566. https://doi.org/10.1074/jbc.m112.384909
Xu Z, Shi H, Li Q, Mei Q, Bao J, Shen Y, Xu J. Mouse macrophage metalloelastase generates angiostatin from plasminogen and suppresses tumor angiogenesis in murine colon cancer. Oncology Reports. 2008 Jul 1;. https://doi.org/10.3892/or.20.1.81
Yang W, Arii S, Gorrin-Rivas M, Mori A, Onodera H, Imamura M. Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer. 2001 Apr 1;91(7):1277-83. PMID 11283927
Goulart A, Ferreira C, Rodrigues A, Coimbra B, Sousa N, Leão P. The correlation between serum vascular endothelial growth factor (VEGF) and tumor VEGF receptor 3 in colorectal cancer. Annals of Surgical Treatment and Research. 2019;97(1):15. https://doi.org/10.4174/astr.2019.97.1.15
Tsai H, Yang I, Lin C, Chai C, Huang Y, Chen C, Hou M, Kuo C, Juo S, Wang J. Predictive value of vascular endothelial growth factor overexpression in early relapse of colorectal cancer patients after curative resection. International Journal of Colorectal Disease. 2012 Sep 9;28(3):415-424. https://doi.org/10.1007/s00384-012-1570-z
Guba M, Seeliger H, Kleespies A, Jauch K, Bruns C. Vascular endothelial growth factor in colorectal cancer. International Journal of Colorectal Disease. 2004 Mar 4;19(6):510-517. https://doi.org/10.1007/s00384-003-0576-y
Slattery ML, Lundgreen A, Kadlubar SA, Bondurant KL, Wolff RK. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Molecular Carcinogenesis. 2011 Nov 28;52(2):155-166. https://doi.org/10.1002/mc.21841
Inagaki-Ohara K, Kondo T, Ito M, Yoshimura A. SOCS, inflammation, and cancer. JAK-STAT. 2013 Jul 15;2(3):e24053. https://doi.org/10.4161/jkst.24053
Matsumoto S, Hara T, Mitsuyama K, Yamamoto M, Tsuruta O, Sata M, Scheller J, Rose-John S, Kado S, Takada T. Essential Roles of IL-6Trans-Signaling in Colonic Epithelial Cells, Induced by the IL-6/Soluble–IL-6 Receptor Derived from Lamina Propria Macrophages, on the Development of Colitis-Associated Premalignant Cancer in a Murine Model. The Journal of Immunology. 2009 Dec 30;184(3):1543-1551. https://doi.org/10.4049/jimmunol.0801217
Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BK, Sethi G, Bishayee A. Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2014 Apr;1845(2):136-154. https://doi.org/10.1016/j.bbcan.2013.12.005
Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, Gritsko T, Turkson J, Kay H, Semenza GL, Cheng JQ, Jove R, Yu H. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene. 2005 Jun 20;24(36):5552-5560. https://doi.org/10.1038/sj.onc.1208719
Chen Q, Lv J, Yang W, Xu B, Wang Z, Yu Z, Wu J, Yang Y, Han Y. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics. 2019;9(22):6424-6442. https://doi.org/10.7150/thno.35528
Fan X, Wang Y, Wang L, Zhu M. Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway. Oncology Reports. 2016 Sep 30;36(6):3559-3567. https://doi.org/10.3892/or.2016.5138
Kuan-Xue S, Hong-Wei X, Rong-Long X. Anticancer effect of salidroside on colon cancer through inhibiting JAK2/STAT3 signaling pathway. Int J Clin Exp Pathol. 2015;8(1):615-21. PMID 25755753
Zhu Z, Sun H, Ma G, Wang Z, Li E, Liu Y, Liu Y. Bufalin Induces Lung Cancer Cell Apoptosis via the Inhibition of PI3K/Akt Pathway. International Journal of Molecular Sciences. 2012 Feb 14;13(2):2025-2035. https://doi.org/10.3390/ijms13022025
Wang S, Sun Y. The IL-6/JAK/STAT3 pathway: Potential therapeutic strategies in treating colorectal cancer. International Journal of Oncology. 2014 Jan 15;44(4):1032-1040. https://doi.org/10.3892/ijo.2014.2259
Qiu Y, Hu Q, Tang Q, Feng W, Hu S, Liang B, Peng W, Yin P. MicroRNA-497 and bufalin act synergistically to inhibit colorectal cancer metastasis. Tumor Biology. 2013 Dec 29;35(3):2599-2606. https://doi.org/10.1007/s13277-013-1342-6
Liu X, Ji Q, Ye N, Sui H, Zhou L, Zhu H, Fan Z, Cai J, Li Q. Berberine Inhibits Invasion and Metastasis of Colorectal Cancer Cells via COX-2/PGE2 Mediated JAK2/STAT3 Signaling Pathway. Tang C. PLOS ONE. 2015 May 8;10(5):e0123478. https://doi.org/10.1371/journal.pone.0123478
Kuo H, Chuang T, Tsai S, Tseng H, Hsu S, Chen Y, Kuo C, Kuo Y, Liu J, Kao M. Berberine, an Isoquinoline Alkaloid, Inhibits the Metastatic Potential of Breast Cancer Cells via Akt Pathway Modulation. Journal of Agricultural and Food Chemistry. 2012 Sep 14;60(38):9649-9658. https://doi.org/10.1021/jf302832n
Hamsa TP, Kuttan G. Berberine Inhibits Pulmonary Metastasis through Down-regulation of MMP in Metastatic B16F-10 Melanoma Cells. Phytotherapy Research. 2011 Sep 26;26(4):568-578. https://doi.org/10.1002/ptr.3586
Hu S, Zhao R, Liu Y, Chen J, Zheng Z, Wang S. Preventive and Therapeutic Roles of Berberine in Gastrointestinal Cancers. BioMed Research International. 2019 Dec 28;2019:1-10. https://doi.org/10.1155/2019/6831520
Hallajzadeh J, Maleki Dana P, Mobini M, Asemi Z, Mansournia MA, Sharifi M, Yousefi B. Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer. Medical Oncology. 2020 Apr 17;37(6). https://doi.org/10.1007/s12032-020-01367-9
Li W, Saud SM, Young MR, Colburn NH, Hua B. Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Molecular and Cellular Biochemistry. 2015 Apr 26;406(1-2):63-73. https://doi.org/10.1007/s11010-015-2424-0
Wei N, Li J, Fang C, Chang J, Xirou V, Syrigos NK, Marks BJ, Chu E, Schmitz JC. Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene. 2018 Oct 22;38(10):1676-1687. https://doi.org/10.1038/s41388-018-0547-y
Xiong H, Du W, Zhang Y, Hong J, Su W, Tang J, Wang Y, Lu R, Fang J. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Molecular Carcinogenesis. 2011 Apr 22;51(2):174-184. https://doi.org/10.1002/mc.20777
Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sciences. 2016 Feb;146:201-213. https://doi.org/10.1016/j.lfs.2016.01.017
Wang W, Zhao C, Jou D, Lü J, Zhang C, Lin L, Lin J. Ursolic acid inhibits the growth of colon cancer-initiating cells by targeting STAT3. Anticancer Res. 2013 Oct;33(10):4279-84. PMID 24122993
Shan J, Xuan Y, Zheng S, Dong Q, Zhang S. Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway. Journal of Zhejiang University SCIENCE B. 2009 Aug 30;10(9):668-674. https://doi.org/10.1631/jzus.b0920149
LIN J, CHEN Y, WEI L, SHEN A, SFERRA TJ, HONG Z, PENG J. Ursolic acid promotes colorectal cancer cell apoptosis and inhibits cell proliferation via modulation of multiple signaling pathways. International Journal of Oncology. 2013 Jul 26;43(4):1235-1243. https://doi.org/10.3892/ijo.2013.2040
Aluyen JK, Ton QN, Tran T, Yang AE, Gottlieb HB, Bellanger RA. Resveratrol: Potential as Anticancer Agent. Journal of Dietary Supplements. 2012 Feb 14;9(1):45-56. https://doi.org/10.3109/19390211.2011.650842
Li D, Wang G, Jin G, Yao K, Zhao Z, Bie L, Guo Y, Li N, Deng W, Chen X, Chen B, Liu Y, Luo S, Guo Z. Resveratrol suppresses colon cancer growth by targeting the AKT/STAT3 signaling pathway. International Journal of Molecular Medicine. 2018 Nov 1;. https://doi.org/10.3892/ijmm.2018.3969
Chae H, Xu R, Won J, Chin Y, Yim H. Molecular Targets of Genistein and Its Related Flavonoids to Exert Anticancer Effects. International Journal of Molecular Sciences. 2019 May 16;20(10):2420. https://doi.org/10.3390/ijms20102420
Ronis MJJ. Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity. Drug Metabolism Reviews. 2016 Jul 2;48(3):331-341. https://doi.org/10.1080/03602532.2016.1206562
Shafiee G, Saidijam M, Tavilani H, Ghasemkhani N, Khodadadi I. Genistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells. International Journal of Molecular and Cellular Medicine. 2016 Jul;5(3). https://doi.org/10.22088/acadpub.BUMS.5.3.178
Tuli HS, Tuorkey MJ, Thakral F, Sak K, Kumar M, Sharma AK, Sharma U, Jain A, Aggarwal V, Bishayee A. Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Frontiers in Pharmacology. 2019 Dec 6;10. https://doi.org/10.3389/fphar.2019.01336
Devi KP, Rajavel T, Habtemariam S, Nabavi SF, Nabavi SM. Molecular mechanisms underlying anticancer effects of myricetin. Life Sciences. 2015 Dec;142:19-25. https://doi.org/10.1016/j.lfs.2015.10.004
Kumamoto T, Fujii M, Hou D. Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Letters. 2009 Mar;275(1):17-26. https://doi.org/10.1016/j.canlet.2008.09.027
Kim B, Won C, Lee Y, Choi JS, Noh KH, Han S, Lee H, Lee CS, Lee D, Ye S, Kim M. Sophoraflavanone G induces apoptosis of human cancer cells by targeting upstream signals of STATs. Biochemical Pharmacology. 2013 Oct;86(7):950-959. https://doi.org/10.1016/j.bcp.2013.08.009
Lin W, Zheng L, Zhuang Q, Zhao J, Cao Z, Zeng J, Lin S, Xu W, Peng J. Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway. BMC Complementary and Alternative Medicine. 2013 Jun 24;13(1). https://doi.org/10.1186/1472-6882-13-144
Peng J. Pien Tze Huang inhibits tumor cell proliferation and promotes apoptosis via suppressing the STAT3 pathway in a colorectal cancer mouse model. International Journal of Oncology. 2012 Jan 3;. https://doi.org/10.3892/ijo.2012.1326
Cai Q, Lin J, Wei L, Zhang L, Wang L, Zhan Y, Zeng J, Xu W, Shen A, Hong Z, Peng J. Hedyotis diffusa Willd Inhibits Colorectal Cancer Growth in Vivo via Inhibition of STAT3 Signaling Pathway. International Journal of Molecular Sciences. 2012 May 18;13(5):6117-6128. https://doi.org/10.3390/ijms13056117
Drutovic D, Chripkova M, Pilatova M, Kruzliak P, Perjesi P, Sarissky M, Lupi M, Damia G, Broggini M, Mojzis J. Benzylidenetetralones, cyclic chalcone analogues, induce cell cycle arrest and apoptosis in HCT116 colorectal cancer cells. Tumor Biology. 2014 Jul 10;35(10):9967-9975. https://doi.org/10.1007/s13277-014-2289-y
Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. European Journal of Medicinal Chemistry. 2015 Jun;98:69-114. https://doi.org/10.1016/j.ejmech.2015.05.004
Lin S, Yang L, Yao Y, Xu L, Xiang Y, Zhao H, Wang L, Zuo Z, Huang X, Zhao C. Flubendazole demonstrates valid antitumor effects by inhibiting STAT3 and activating autophagy. Journal of Experimental & Clinical Cancer Research. 2019 Jul 8;38(1). https://doi.org/10.1186/s13046-019-1303-z
Ye T, Yang F, Zhu Y, Li Y, Lei Q, Song X, Xia Y, Xiong Y, Zhang L, Wang N, Zhao L, Gou H, Xie Y, Yang S, Yu L, Yang L, Wei Y. Inhibition of Stat3 signaling pathway by nifuroxazide improves antitumor immunity and impairs colorectal carcinoma metastasis. Cell Death & Disease. 2017 Jan 5;8(1):e2534-e2534. https://doi.org/10.1038/cddis.2016.452
Xiong H, Zhang Z, Tian X, Sun D, Liang Q, Zhang Y, Lu R, Chen Y, Fang J. Inhibition of JAK1, 2/STAT3 Signaling Induces Apoptosis, Cell Cycle Arrest, and Reduces Tumor Cell Invasion in Colorectal Cancer Cells. Neoplasia. 2008 Mar;10(3):287-297. https://doi.org/10.1593/neo.07971
Kusaba T. Expression of p-STAT3 in human colorectal adenocarcinoma and adenoma; correlation with clinicopathological factors. Journal of Clinical Pathology. 2005 Aug 1;58(8):833-838. https://doi.org/10.1136/jcp.2004.023416
Chen LF, Cohen EEW, Grandis JR. New Strategies in Head and Neck Cancer: Understanding Resistance to Epidermal Growth Factor Receptor Inhibitors. Clinical Cancer Research. 2010 Apr 20;16(9):2489-2495. https://doi.org/10.1158/1078-0432.ccr-09-2318
Yang J, Zhong X, Yum H, Lee H, Kundu JK, Na H, Surh Y. Curcumin Inhibits STAT3 Signaling in the Colon of Dextran Sulfate Sodium-treated Mice. Journal of Cancer Prevention. 2013 Jun 30;18(2):186-191. https://doi.org/10.15430/jcp.2013.18.2.186
Chung SS, Dutta P, Chard N, Wu Y, Chen Q, Chen G, Vadgama J. A novel curcumin analog inhibits canonical and non-canonical functions of telomerase through STAT3 and NF-κB inactivation in colorectal cancer cells. Oncotarget. 2019 Jul 16;10(44):4516-4531. https://doi.org/10.18632/oncotarget.27000
Yang L, Lin S, Xu L, Lin J, Zhao C, Huang X. Novel activators and small-molecule inhibitors of STAT3 in cancer. Cytokine & Growth Factor Reviews. 2019 Oct;49:10-22. https://doi.org/10.1016/j.cytogfr.2019.10.005
Li C, Chen C, An Q, Yang T, Sang Z, Yang Y, Ju Y, Tong A, Luo Y. A novel series of napabucasin derivatives as orally active inhibitors of signal transducer and activator of transcription 3 (STAT3). European Journal of Medicinal Chemistry. 2019 Jan;162:543-554. https://doi.org/10.1016/j.ejmech.2018.10.067
Proia DA, Foley KP, Korbut T, Sang J, Smith D, Bates RC, Liu Y, Rosenberg AF, Zhou D, Koya K, Barsoum J, Blackman RK. Multifaceted Intervention by the Hsp90 Inhibitor Ganetespib (STA-9090) in Cancer Cells with Activated JAK/STAT Signaling. Gires O. PLoS ONE. 2011 Apr 14;6(4):e18552. https://doi.org/10.1371/journal.pone.0018552
Nagaraju GP, Park W, Wen J, Mahaseth H, Landry J, Farris AB, Willingham F, Sullivan PS, Proia DA, El-Hariry I, Taliaferro-Smith L, Diaz R, El-Rayes BF. Erratum to: Antiangiogenic effects of ganetespib in colorectal cancer mediated through inhibition of HIF-1α and STAT-3. Angiogenesis. 2013 Aug 2;16(4):919-919. https://doi.org/10.1007/s10456-013-9373-6
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Violetta Krajka-Kuźniak, Katarzyna Papierska
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Accepted 2020-07-05
Published 2020-07-28