Published: 2020-07-28

The role of STAT3 in the colorectal cancer therapy : Running title: STAT3 in colorectal cancer

Poznan University of Medical Sciences, Department of Pharmaceutical Biochemistry
Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences
STAT3, colorectal cancer, kinase JAK, SOCS proteins


Colorectal cancer is a type of a malignant tumor in the digestive system and its incidence rate in the United States and the European Union increases by an average of 4.2% to 4.6% annually. Colorectal cancer is a common tumor affecting rather elderly than younger individuals. An increasing number of studies prove that deregulation of the signaling pathway and abnormal expression and activation of genes can be the main reason for the development of colorectal cancer. Signal transducer and activator of transcription (STAT3) is a transcription factor of signal transduction and transcriptional activation of target genes and plays important roles in proliferation, differentiation apoptosis and other physiological processes. Several data confirm that abnormal activation of STAT3 is involved in the development of tumors. Identifying compounds that inhibit STAT3 is a promising strategy for cancer chemoprevention and treatment of colorectal cancer. In this review, the roles of STAT3 in pathogenesis and treatment of colorectal cancer are discussed.


Download data is not yet available.


  1. References
  2. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet Lond Engl. 2019 Oct;394(10207):1467–1480.
  3. Ji K, Zhang M, Chu Q, Gan Y, Ren H, Zhang L, et al. The role of p-STAT3 as a prognostic and clinicopathological marker in colorectal cancer: a systematic review and meta-analysis. PLoS ONE. 2016 Aug;11(8). DOI:10.1371/journal.pone.0160125
  4. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun;61(5):759–767.
  5. Wake MS, Watson CJ. STAT3 the oncogene – still eluding therapy? FEBS. 2015 Jun;282: 2600–2611.
  6. Laudisi F, Cherubini F, Grazia AD, Dinallo V, Fusco DD, Franzè E, et al. Progranulin sustains STAT3 hyper-activation and oncogenic function in colorectal cancer cells. Mol Oncol. 2019 Aug;13(10):2142–2159.
  7. Xiong A, Yang Z, Shen Y, Zhou J, Shen Q. Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers. 2014 Jun;6(2):926–957.
  8. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014 Nov;14(11):736–746.
  9. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010 Mar;140(6):883–899.
  10. Shi Y, Zhang Z, Qu X, Zhu X, Zhao L, Wei R, et al. Roles of STAT3 in leukemia (Review). Int J Oncol. 2018 Jul;53(1):7–20.
  11. Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020 Mar;80(106210). DOI:10.1016/j.intimp.2020.106210
  12. Pilati C, Zucman-Rossi J. Mutations leading to constitutive active gp130/JAK1/STAT3 pathway. Cytokine Growth Factor Rev. 2015 Oct;26(5):499–506.
  13. Bournazou E, Bromberg J. Targeting the tumor microenvironment. JAK-STAT. 2013 Apr;2(2):23828-23836.
  14. Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene. 2000 May;19(21):2474–2488.
  15. Kim BH, Yi EH, Ye SK. Signal transducer and activator of transcription 3 as a therapeutic target for cancer and the tumor microenvironment. Arch Pharm Res. 2016 Aug 1;39(8):1085–1099.
  16. Trengove MC, Ward AC. SOCS proteins in development and disease. Am J Clin Exp Immunol. 2013 Feb 27;2(1):1–29.
  17. Shuai K. Regulation of cytokine signaling pathways by PIAS proteins. Cell Res. 2006 Feb;16(2):196–202.
  18. Horiguchi A, Oya M, Marumo K, Murai M. STAT3, but not ERKs, mediates the IL-6–induced proliferation of renal cancer cells, ACHN and 769P. Kidney Int. 2002 Mar;61(3):926–938.
  19. Corvinus FM, Orth C, Moriggl R, Tsareva SA, Wagner S, Pfitzner EB, et al. Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia N Y N. 2005 Jun;7(6):545–555.
  20. Lin L, Liu A, Peng Z, Lin H-J, Li P-K, Li C, et al. STAT3 is necessary for proliferation and survival in colon cancer–initiating cells. Cancer Res. 2011 Dec;71(23):7226–7237.
  21. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity. 1999 Jan;10(1):105–115.
  22. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest. 2001 Feb;107(3):351–362.
  23. Lee H, Jeong AJ, Ye SK. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep. 2019 Jul;52(7):415–423.
  24. Tang S, Yuan X, Song J, Chen Y, Tan X, Li Q. Association analyses of the JAK/STAT signaling pathway with the progression and prognosis of colon cancer. Oncol Lett. 2019 Jan;17(1):159–164.
  25. Said AH, Raufman JP, Xie G. The role of matrix metalloproteinases in colorectal cancer. Cancers. 2014 Mar;6(1):366–375.
  26. Dragutinović VV, Radonjić NV, Petronijević ND, Tatić SB, Dimitrijević IB, Radovanović NS, et al. Matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in preoperative serum as independent prognostic markers in patients with colorectal cancer. Mol Cell Biochem. 2011 Sep;355(1):173–178.
  27. Kryczka J, Stasiak M, Dziki L, Mik M, Dziki A, Cierniewski CS. Matrix metalloproteinase-2 cleavage of the β1 integrin ectodomain facilitates colon cancer cell motility. J Biol Chem. 2012 Oct;287(43):36556–36566.
  28. Xu Z, Shi H, Li Q, Mei Q, Bao J, Shen Y, et al. Mouse macrophage metalloelastase generates angiostatin from plasminogen and suppresses tumor angiogenesis in murine colon cancer. Oncol Rep. 2008 Jul;20(1):81–88.
  29. Yang W, Arii S, Gorrin‐Rivas MJ, Mori A, Onodera H, Imamura M. Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer. 2001 Dec;91(7):1277–1283.
  30. Goulart A, Ferreira C, Rodrigues A, Coimbra B, Sousa N, Leão P. The correlation between serum vascular endothelial growth factor (VEGF) and tumor VEGF receptor 3 in colorectal cancer. Ann Surg Treat Res. 2019 Jul;97(1):15–20.
  31. Tsai HL, Yang IP, Lin CH, Chai CY, Huang YH, Chen CF, et al. Predictive value of vascular endothelial growth factor overexpression in early relapse of colorectal cancer patients after curative resection. Int J Colorectal Dis. 2013 Mar;28(3):415–424.
  32. Guba M, Seeliger H, Kleespies A, Jauch KW, Bruns C. Vascular endothelial growth factor in colorectal cancer. Int J Colorectal Dis. 2004 Nov;19(6):510–517.
  33. Slattery ML, Lundgreen A, Kadlubar SA, Bondurant KL, Wolff RK. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog. 2013 Nov;52(2):155–166.
  34. Inagaki-Ohara K, Kondo T, Ito M, Yoshimura A. SOCS, inflammation, and cancer. JAK-STAT. 2013 Jul;2(3):24053-24062.
  35. Matsumoto S, Hara T, Mitsuyama K, Yamamoto M, Tsuruta O, Sata M, et al. Essential Roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble–IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. J Immunol. 2010 Feb;184(3):1543–1551.
  36. Fan XJ, Wang Y, Wang L, Zhu M. Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway. Oncol Rep. 2016 Dec;36(6):3559–3567.
  37. Sun KX, Xia HW, Xia RL. Anticancer effect of salidroside on colon cancer through inhibiting JAK2/STAT3 signaling pathway. Int J Clin Exp Pathol. 2015 Jan;8(1):615–621.
  38. Zhu Z, Sun H, Ma G, Wang Z, Li E, Liu Y, et al. Bufalin induces lung cancer cell apoptosis via the inhibition of PI3K/Akt pathway. Int J Mol Sci. 2012 Feb;13(2):2025–2035.
  39. Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: Potential therapeutic strategies in treating colorectal cancer (Review). Int J Oncol. 2014 Ap;44(4):1032–1040.
  40. Zhuang Q, Hong F, Shen A, Zheng L, Zeng J, Lin W, et al. Pien Tze Huang inhibits tumor cell proliferation and promotes apoptosis via suppressing the STAT3 pathway in a colorectal cancer mouse model. Int J Oncol. 2012 May;40(5):1569–1574.
  41. Cai Q, Lin J, Wei L, Zhang L, Wang L, Zhan Y, et al. Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of STAT3 signaling pathway. Int J Mol Sci. 2012 May;13(5):6117–6128.
  42. Lin W, Zheng L, Zhuang Q, Zhao J, Cao Z, Zeng J, et al. Spica prunellae promotes cancer cell apoptosis, inhibits cell proliferation and tumor angiogenesis in a mouse model of colorectal cancer via suppression of stat3 pathway. BMC Complement Altern Med. 2013 Jun;13(1):144-154.
  43. Liu X, Ji Q, Ye N, Sui H, Zhou L, Zhu H, et al. Berberine Inhibits invasion and metastasis of colorectal cancer cells via COX-2/PGE2 mediated JAK2/STAT3 signaling pathway. PLoS ONE. 2015 May;10(5). Doi: 10.1371/journal.pone.0123478
  44. Kuo HP, Chuang TC, Tsai SC, Tseng H-H, Hsu SC, Chen YC, et al. Berberine, an isoquinoline alkaloid, inhibits the metastatic potential of breast cancer cells via akt pathway modulation. J Agric Food Chem. 2012 Sep;60(38):9649–9658.
  45. Hamsa TP, Kuttan G. Berberine inhibits pulmonary metastasis through down-regulation of MMP in metastatic b16f-10 melanoma cells. Phytother Res. 2012 May;26(4):568–578.
  46. Li W, Saud SM, Young MR, Colburn NH, Hua B. Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Mol Cell Biochem. 2015 Aug;406(1):63–73.
  47. Wei N, Li J, Fang C, Chang J, Xirou V, Syrigos NK, et al. Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene. 2019 Mar;38(10):1676–1687.
  48. Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci. 2016 Feb;146:201–213.
  49. Wang W, Zhao C, Jou D, Lü J, Zhang C, Lin L, et al. Ursolic Acid Inhibits the Growth of Colon Cancer-initiating Cells by Targeting STAT3. Anticancer Res. 2013 Jan;33(10):4279–4284.
  50. Yang JY, Zhong X, Yum HW, Lee HJ, Kundu JK, Na HK, et al. Curcumin inhibits STAT3 signaling in the colon of dextran sulfate sodium-treated mice. J Cancer Prev. 2013 Jun;18(2):186–191.
  51. Xiong H, Du W, Zhang YJ, Hong J, Su WY, Tang JT, et al. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Mol Carcinog. 2012 Apr;51(2):174–184.
  52. Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem. 2015 Jun;98:69–114.
  53. Drutovic D, Chripkova M, Pilatova M, Kruzliak P, Perjesi P, Sarissky M, et al. Benzylidenetetralones, cyclic chalcone analogues, induce cell cycle arrest and apoptosis in HCT116 colorectal cancer cells. Tumor Biol. 2014 Oct;35(10):9967–9975.
  54. Xiong H, Zhang ZG, Tian XQ, Sun DF, Liang QC, Zhang YJ, et al. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia N Y N. 2008 Mar;10(3):287–297.
  55. Kusaba T. Expression of p-STAT3 in human colorectal adenocarcinoma and adenoma; correlation with clinicopathological factors. J Clin Pathol. 2005 Aug;58(8):833–838.
  56. Chen LF, Cohen EEW, Grandis JR. New strategies in head and neck cancer: understanding resistance to epidermal growth factor receptor inhibitors. Clin Cancer Res. 2010 May;16(9):2489–2495.
  57. Ganji PN, Park W, Wen J, Mahaseth H, Landry J, Farris AB, et al. Antiangiogenic effects of ganetespib in colorectal cancer mediated through inhibition of HIF-1α and STAT-3. Angiogenesis. 2013 Oct;16(4):903–917.
  58. Ye TH, Yang FF, Zhu YX, Li YL, Lei Q, Song XJ, et al. Inhibition of Stat3 signaling pathway by nifuroxazide improves antitumor immunity and impairs colorectal carcinoma metastasis. Cell Death Dis. 2018 Jan;8(1):2534–2534.
  59. Lin S, Yang L, Yao Y, Xu L, Xiang Y, Zhao H, et al. Flubendazole demonstrates valid antitumor effects by inhibiting STAT3 and activating autophagy. J Exp Clin Cancer Res. 2019 Jul;38(1):293-306.
  60. Yang L, Lin S, Xu L, Lin J, Zhao C, Huang X. Novel activators and small-molecule inhibitors of STAT3 in cancer. Cytokine Growth Factor Rev. 2019 Oct;49:10–22.

How to Cite

Krajka-Kuźniak V, Papierska K. The role of STAT3 in the colorectal cancer therapy : Running title: STAT3 in colorectal cancer. JMS [Internet]. 2020Jul.28 [cited 2020Aug.11];. Available from: