Monitoring the skin NADH changes during ischaemia and reperfusion in humans
DOI:
https://doi.org/10.20883/medical.405Keywords:
460-nm fluorescence, ischaemia, microcirculation, mitochondria, nicotinamide adenine dinucleotide, reperfusionAbstract
Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in many important biochemical reactions in human metabolism, including participation in energy production by mitochondria. Flow Mediated Skin Fluorescence (FMSF) is a non-invasive method to study dynamic changes in the content of the reduced form of NADH by measuring the optical properties of NADH related to the emission of the autofluorescent light (460 nm) after an earlier excitation by ultraviolet light. This review summarises the available studies using this method to describe its potential and limitations.
Downloads
References
Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radical Biology and Medicine. 2004 09;37(6):755-67. https://doi.org/10.1016/j.freeradbiomed.2004.05.034
Anderson KA, Madsen AS, Olsen CA, Hirschey MD. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2017 Dec;1858(12):991-8. https://doi.org/10.1016/j.bbabio.2017.09.005
Mayevsky A, Rogatsky GG. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. American Journal of Physiology-Cell Physiology. 2007 02;292(2):C615-C640. https://doi.org/10.1152/ajpcell.00249.2006
Koga Y, Tanaka M, Ohta S, Wei Y. Biochemistry of mitochondria, life and intervention 2010. Biochimica et Biophysica Acta (BBA) - General Subjects. 2012 05;1820(5):551-552. https://doi.org/10.1016/j.bbagen.2012.01.008
Marín-García J, Akhmedov AT, Moe GW. Mitochondria in heart failure: the emerging role of mitochondrial dynamics. Heart Failure Reviews. 2012 06 17;18(4):439-456. https://doi.org/10.1007/s10741-012-9330-2
Vidugiriene J, Leippe D, Sobol M, Vidugiris G, Zhou W, Meisenheimer P, Gautam P, Wennerberg K, Cali JJ. Bioluminescent Cell-Based NAD(P)/NAD(P)H Assays for Rapid Dinucleotide Measurement and Inhibitor Screening. ASSAY and Drug Development Technologies. 2014 Dec;12(9-10):514-526. https://doi.org/10.1089/adt.2014.605
Levy B, Ambrosio G, Pries A, Struijker-Boudier H. Microcirculation in Hypertension. Circulation. 2001 08 07;104(6):735-740. https://doi.org/10.1161/hc3101.091158
Chance B, Cohen P, Jobsis F, Schoener B. Intracellular Oxidation-Reduction States in Vivo: The microfluorometry of pyridine nucleotide gives a continuous measurement of the oxidation state. Science. 1962 08 17;137(3529):499-508. https://doi.org/10.1126/science.137.3529.499
Theorell H, Nygaard A. Kinetics and equilibria in flavoprotein systems. I. A fluorescence recorder and its application to a study of the dissociation of the old yellow enzyme and its resynthesis from riboflavin phosphate and protein. Acta Chem Scand. 1954;:877-88.
Chance B. Mitochondrial NADH redox state, monitoring discovery and deployment in tissue. Methods in Enzymology. 2004;:361-70. https://doi.org/10.1016/S0076-6879(04)85020-1 PMID 15130749
Mayevsky A, Chance B. A New Long-Term Method for the Measurement of NADH Fluorescence in Intact Rat Brain With Chronically Implanted Cannula. Adv Exp Med Biol. 1973;37A:239-44. https://doi.org/10.1007/978-1-4684-3288-6_30 PMID 4378057
Mayevsky A, Sonn J, Luger-Hamer M, Nakache R. Real-Time assessment of organ vitality during the transplantation procedure. Transplantation Reviews. 2003 04;17(2):96-116. https://doi.org/10.1016/s0955-470x(02)00007-1
Dunaev AV, Dremin VV, Zherebtsov EA, Rafailov IE, Litvinova KS, Palmer SG, Stewart NA, Sokolovski SG, Rafailov EU. Individual variability analysis of fluorescence parameters measured in skin with different levels of nutritive blood flow. Medical Engineering & Physics. 2015 06;37(6):574-583. https://doi.org/10.1016/j.medengphy.2015.03.011
Chen Q, Camara AKS, Stowe DF, Hoppel CL, Lesnefsky EJ. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. American Journal of Physiology-Cell Physiology. 2007 01;292(1):C137-C147. https://doi.org/10.1152/ajpcell.00270.2006
Riess ML, Camara AKS, Chen Q, Novalija E, Rhodes SS, Stowe DF. Altered NADH and improved function by anesthetic and ischemic preconditioning in guinea pig intact hearts. American Journal of Physiology-Heart and Circulatory Physiology. 2002 07 01;283(1):H53-H60. https://doi.org/10.1152/ajpheart.01057.2001
Lesnefsky EJ, Chen Q, Moghaddas S, Hassan MO, Tandler B, Hoppel CL. Blockade of Electron Transport during Ischemia Protects Cardiac Mitochondria. Journal of Biological Chemistry. 2004 09 03;279(46):47961-47967. https://doi.org/10.1074/jbc.m409720200
Varadarajan SG, An J, Novalija E, Smart SC, Stowe DF. Changes in [Na+]i, compartmental [Ca2+], and NADH with dysfunction after global ischemia in intact hearts. American Journal of Physiology-Heart and Circulatory Physiology. 2001 01 01;280(1):H280-H293. https://doi.org/10.1152/ajpheart.2001.280.1.h280
Mayevsky A, Chance B. Oxidation–reduction states of NADH in vivo: From animals to clinical use. Mitochondrion. 2007 09;7(5):330-339. https://doi.org/10.1016/j.mito.2007.05.001
Sibrecht G, Bugaj O, Filberek P, Nizinski J, Kusy K, Zielinski J, Guzik P. Flow-Mediated Skin Fluorescence Method for Non-Invasive Measurement of the NADH At 460 Nm – a Possibility To Assess the Mitochondrial Function. Postępy Biologii Komórki. 2017;44(4):333-52.
Hellmann M, Tarnawska M, Dudziak M, Dorniak K, Roustit M, Cracowski J. Reproducibility of flow mediated skin fluorescence to assess microvascular function. Microvascular Research. 2017 09;113:60-64. https://doi.org/10.1016/j.mvr.2017.05.004
Bugaj O, Zieliński J, Kusy K, Kantanista A, Wieliński D, Guzik P. The Effect of Exercise on the Skin Content of the Reduced Form of NAD and Its Response to Transient Ischemia and Reperfusion in Highly Trained Athletes. Frontiers in Physiology. 2019 05 15;10. https://doi.org/10.3389/fphys.2019.00600
Piotrowski L, Urbaniak M, Jedrzejczak B, Marcinek A, Gebicki J. 10.1152/ajpheart.2001.280.1.H280 Note: Flow mediated skin fluorescence—A novel technique for evaluation of cutaneous microcirculation. Review of Scientific Instruments. 2016 03;87(3):036111. https://doi.org/10.1063/1.4945044
Jacques SL. Corrigendum: Optical properties of biological tissues: a review. Physics in Medicine and Biology. 2013 06 27;58(14):5007-5008. https://doi.org/10.1088/0031-9155/58/14/5007
Dremin VV, Dunaev AV. How the melanin concentration in the skin affects the fluorescence-spectroscopy signal formation. Journal of Optical Technology. 2016 01 01;83(1):43. https://doi.org/10.1364/jot.83.000043
Rees J, Robertson K. Variation in Epidermal Morphology in Human Skin at Different Body Sites as Measured by Reflectance Confocal Microscopy. Acta Dermato Venereologica. 2010;90(4):368-373. https://doi.org/10.2340/00015555-0875
Klein HH, Schaper J, Puschmann S, Nienaber C, Kreuzer H, Schaper W. Loss of canine myocardial nicotinamide adenine dinucleotides determines the transition from reversible to irreversible ischemic damage of myocardial cells. Basic Research in Cardiology. 1981 Nov;76(6):612-621. https://doi.org/10.1007/bf01908051
Andersson-Engels S, Brian C. In vivo fluorescence in clinical oncology: fundamental and practical issues. J Cell Pharmacol. 1992;3:66-79.
Nuutinen EM. Subcellular origin of the surface fluorescence of reduced nicotinamide nucleotides in the isolated perfused rat heart. Basic Research in Cardiology. 1984 01;79(1):49-58. https://doi.org/10.1007/bf01935806
Mayevsky A. Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Research Reviews. 1984 03;7(1):49-68. https://doi.org/10.1016/0165-0173(84)90029-8
Blinova K, Carroll S, Bose S, Smirnov AV, Harvey JJ, Knutson JR, Balaban RS. Distribution of Mitochondrial NADH Fluorescence Lifetimes: Steady-State Kinetics of Matrix NADH Interactions. Biochemistry. 2005 02;44(7):2585-2594. https://doi.org/10.1021/bi0485124
Blinova K, Levine RL, Boja ES, Griffiths GL, Shi Z, Ruddy B, Balaban RS. Mitochondrial NADH Fluorescence Is Enhanced by Complex I Binding. Biochemistry. 2008 09 09;47(36):9636-9645. https://doi.org/10.1021/bi800307y
Blacker TS, Duchen MR. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radical Biology and Medicine. 2016 Nov;100:53-65. https://doi.org/10.1016/j.freeradbiomed.2016.08.010
Tarnawska M, Dorniak K, Kaszubowski M, Dudziak M, Hellmann M. A pilot study with flow mediated skin fluorescence: A novel device to assess microvascular endothelial function in coronary artery disease. Cardiology Journal. 2018;25(1):120-7. https://doi.org/10.5603/CJ.a2017.0096 PMID 28840593
Katarzynska J, Borkowska A, Czajkowski P, Los A, Szczerbinski L, Milewska-Kranc A, Marcinek A, Kretowski A, Cypryk K, Gebicki J. Flow Mediated Skin Fluorescence technique reveals remarkable effect of age on microcirculation and metabolic regulation in type 1 diabetes. Microvascular Research. 2019 07;124:19-24. https://doi.org/10.1016/j.mvr.2019.02.005
Bogaczewicz J, Tokarska K, Wozniacka A. Changes of NADH Fluorescence from the Skin of Patients with Systemic Lupus Erythematosus. BioMed Research International. 2019 Dec 24;2019:1-7. https://doi.org/10.1155/2019/5897487
Majewski S, Szewczyk K, Białas AJ, Miłkowska-Dymanowska J, Kurmanowska Z, Górski P. Assessment of microvascular function in vivo using flow mediated skin fluorescence (FMSF) in patients with obstructive lung diseases: A preliminary study. Microvascular Research. 2020 01;127:103914. https://doi.org/10.1016/j.mvr.2019.103914
Published
Issue
Section
License
Copyright (c) 2020 Jan Niziński, Lukasz Kamieniarz, Piotr Filberek, Greta Sibrecht, Przemysław Guzik
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.