Hemorheological studies of chosen clinical cases
DOI:
https://doi.org/10.20883/medical.e17Keywords:
hemorheology, blood viscosity, abnormal aggregability, abnormal deformationAbstract
Rheology – the study of the flow of matter and accompanying phenomena of real bodies deformation – in relation to blood – hemorheology. Blood viscosity – the main rheological parameter – has been studied in many research centers and among many different group of patients. The main disorders related to the hemorheological properties are: coronary insufficiency, vascular congestion, myocardial infarction, cerebral circulation disorder, Reynaud disease, ischemic limbs, diabetes, anemia, tumors. The following parameters are the main blood viscosity determinants: plasma viscosity, hematocrit, red cell deformability and erythrocytes aggregation. In hemorheological studies we used mathematical rheological models. The measurements of blood and plasma viscosity are performed by means of oscillating-rotary rheometers in order to determine the dependence of blood viscosity on the shear rate and the two components of the complex blood viscosity. Determination of blood cells aggregability and deformability is performed directly by means of aggregometers and appropiate filters and indirectly using rheological techniques with advanced mathematical models of blood viscoelasticity. Blood and plasma viscosity are subject to autoregulation mechanisms of the body. Recognition of those mechanisms may help in assessment of some diseases risk: ischemic stroke or myocardial infarction. In many cases rheological measurements may reveal the most recent phases of diseases and disorderses which enables early therapy with specimens improving the blood fluidity. For this reason rheological measurements should be applied in diagnostics and therapy. Mutual relations between the main factors determining the blood viscosity and their effect on blood flow are the main subject of current report.Downloads
References
Lerche D, Bämler H, Kucera W, Meier W, Paulitschke M. Flow properties of blood and hemorheological methods of quantification. In: Physical Characterization of Biological cells. Basic research and clinic relevance. Scütt W, Klinkmann H, Lamprecht I, Wilson T (eds.). Verlag Gesundheit GmbH Berlin, 1991; 189–214.
Reinhart WH. Molecular biology and self-regulatory mechanism of blood viscosity. A review. Biorheology. 2000;38:203–212.
Chien S, Jan KM. Ultrastructural basis of the mechanism of rouleaux formation. Microvas Res. 1973;5:155–166.
Lerche D, Koch B, Vlastos G. Flow behaviour of blood. Rheology. 1993;93:105–112.
Hardeman MR, Goedhart PT, Schut NH. Laser assisted Optical Rotational Cell Analyser (L.O.R.C.A). Red blood cell deformabitlyty; Elongation index versus cell transit time. Clin Hemorheol. 1994;14:619–630.
Hardeman MR, Goedhart PT, Dobbe JGG. Laser assisted Optical Rotational Cell Analyser (L.O.R.C.A). A new instrument for measurement of variuous structural hemorheological parameters. Clin. Hemorheol. 1994;14:605–618.
Sandhagen B. Assesment of blood rheology. Methodology and studies in healthy individuals, in patients with certain diseases and during liquid blood preservation. Acta Universitatis Upsaliensis, Uppsala; 1988.
Musielak M. Red blood cell-deformability measurenent: review of techniques. Clin Hemorheol Microcirc. 2009; 42:47–64.
Marcinkowska-Gapińska A, Gapiński J, Elikowski W, Jaroszyk F, Kubisz L. Comparison of three rheological models of shear flow behaviour studied on blood samples from post-infarction patients. Med Biol Eng Comp. 2007;45: 837–844.
Quemada D. A rheological model for studying the hematocrit dependence of red cell – red cell and red cell – and red cell – protein interactions in blood. Biorheology. 1981;18:501–516.
Quemada D. Blood rheology and its implication in flow of blood. In: Arteries and arterial blood flow. Rodkiewicz CM (ed.). Springer Verlag, Vien-New York, 1983; 1–127.
Marcinkowska-Gapińska A, Jaroszyk F, Kubisz L. Blood rheograms made on patients after myocardial infarction. Sci. Proc. Riga Tech. Univ. Ser. 6. Transport and Engineering, 2002; 138–142.
Marcinkowska-Gapińska A, Kowal P. Blood fluidity and thermography in patients with diabetes mellitus and coronary artery disease in comparison to healthy subjects. Clin Hemorheol Microcirc. 2006;35:473–479.
Kowal P, Marcinkowska-Gapińska A. Badanie korelacji obrazu termograficznego z profilem hemoreologicznym u osób chorych na cukrzycę. Neuroskop. 2004;6:128–131 (in Polish).
Kowal P, Marcinkowska-Gapińska A. Comparison of the hemorheological parameters of blood in the groups of patients after cerebral stroke and myocardial infarction. Phys Med. 2004;20(Supplement):105–107.
Kowal P, Marcinkowska-Gapińska A. Hemorheological changes dependent on the time form the onset of ischemic stroke. J Neurol Sci. 2007;258(1–2):132–136.
Marcinkowska-Gapińska A, Kowal P. Comparative analysis of chosen hemorheological methods in a group of stroke patients. Clin Hemorheol Microcir. 2009;41:27–33.
Kowal P, Siemieniak I, Marcinkowska-Gapińska A. Próba oceny zmian hemoreologicznych w grupie pacjentów z niemymi klinicznie ogniskami niedokrwienia mózgu. Neuroskop. 2009;11:41–43 (in Polish).
Cho YI, Money MP, Cho DJ. Hemorheological disorders in diabetes mellitus. J Diabetes Sci Technol. 2008;2:1130–1238.
Singh A, Eckardt KV, Zimmermann A, Gotz KH, Hamann M, Ratcliffe PJ, Kurtz A, Reinhart WH. Increased plasma viscosity as a reason for inappropriate erythroprotein formation. J Clin Invest. 1993;91:251–256.
Kowal P. Arterial hypertension decreases fibrinogen molecules contribution to the inter-red cells connections in stroke patients. Clin Hemorheol Microcir. 1999;21: 321–324.
Seidel D. The HELP system: an efficient and safe method of plasmatherapy in the treatment of severe hybercholesterolemia. Ther Umsch. 1990;47:514–519.
Kowal P, Marcinkowska-Gapińska A, Kędzierski A, Siemienia I, Czekalski S, Kozubski W. Wpływ plazmaferezy klasycznej na profil hemoreologiczny u pacjentów z chorobami układu nerwowego. Badania pilotażowe. Neuroskop. 2009;11:34–36 (in Polish).
Kowal P, Zmyślony A. Hemorheological changes after intravenous gammaglobulin administration in patients with neurological disorders. Clin Hemorheol Microcir. 2008;40:229–234.
Marcinkowska-Gapińska A, Kowal P, Chałupka Z. The changes of low-shear rate hemorheological properties depending on the fluid used for transfusion. Clin Hemorheol Microcir. 2002;27:171–176.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Anna Marcinkowska-Gapińska, Piotr Kowal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.