Evaluation of the Anticancer Potential of S. euphratica, S. staminea, and S. trichoclada in Colon Cancer: Monotherapy and Combination with Cisplatin
DOI:
https://doi.org/10.20883/medical.e1469Keywords:
phytotherapy, salvia, cancerAbstract
Introduction. The use of herbal products in the treatment of colon cancer appears promising. Numerous Salvia species have been identified to exhibit cytotoxic properties. In this study, ethanolic extracts of three Salvia species collected from the Bingöl region (Salvia euphratica, Salvia staminea, and Salvia trichoclada), which have not been sufficiently investigated for their anticancer potential, were applied to the HT-29 colon cancer cell line both as monotherapies and in combination with cisplatin.
Material and methods. A crystal violet assay was performed to assess cell viability. Changes in cellular functions were evaluated using colony-formation and 3D soft agar assays for colony-forming ability, wound-healing assays for migration, and Western blot analyses for protein expression levels.
Results. The IC₅₀ values were determined as 38.16, 40.85, and 43.40 µg/ml, respectively. In synergy assays with cisplatin, the combination indices were 9.54, 9.37, and 9.61, respectively. It was observed that the Salvia species alone reduced colony-forming ability in both 2D and 3D cultures, whereas this effect diminished when combined with cisplatin. The wound closure percentage decreased under combination treatment. Furthermore, although mTOR and AKT protein levels were reduced in combination treatments compared with monotherapy, p53 and c-PARP levels were elevated.
Conclusions. Although the examined Salvia species exhibited strong cytotoxic effects when used alone, these effects were attenuated when combined with cisplatin. Further investigations are needed to elucidate the underlying mechanisms of this phenomenon.
Downloads
References
Chhikara BS, Parang K. Global Cancer Statistics 2022: the trends projection analysis. Chem Biol Lett. 2023;10(1):451. Available from: https://pubs.thesciencein.org/journal/index.php/cbl/article/view/451
Thanikachalam K, Khan G. Colorectal cancer and nutrition. Nutrients. 2019;11(1):164. https://doi.org/10.3390/nu11010164
Hossain MS, Karuniawati H, Jairoun AA, Urbi Z, Ooi DJ, John A, Lim YC, Kibria KMK, Mohiuddin AKM, Ming LG. Colorectal cancer: a review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers (Basel). 2022;14(7):1732. https://doi.org/10.3390/cancers14071732
Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023;73(3):233–54. https://doi.org/10.3322/caac.21772.
Araghi M, Soerjomataram I, Jenkins M, Brierley J, Morris E, Bray F, Arnold M. Global trends in colorectal cancer mortality: projections to the year 2035. Int J Cancer. 2019;144(12):2992–3000. https://doi.org/10.1002/ijc.32055
Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019;88:102925. https://doi.org/10.1016/j.bioorg.2019.102925
Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 2019;53(2):148. https://doi.org/10.2478/raon-2019-0018
Asadi-Samani M, Kooti W, Aslani E, Shirzad H. A systematic review of ıran’s medicinal plants with anticancer effects. J Evidence-Based Complement Altern Med. 2016;21(2):143–53. https://doi.org/10.1177/2156587215600873
Xavier CPR, Pereira-Wilson C. Medicinal plants of the genuses Salvia and Hypericum are sources of anticolon cancer compounds: Effects on PI3K/Akt and MAP kinases pathways. PharmaNutrition. 2016;4(2):112–22. https://doi.org/10.1016/j.phanu.2015.11.002
Hien NM, Nguyen TYN, Le NTH, Le TNT, Chau NTN, Le TMH, Nguyen BQH. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon. 2024. https://doi.org/10.1016/j.heliyon.2024.e39229
Jung T, Cheon C. Synergistic and additive effects of herbal medicines in combination with chemotherapeutics: a scoping review. Integr Cancer Ther. 2024;23:15347354241259416. https://doi.org/10.1177/15347354241259416
Al-Jaber HI. Essential oil composition, total phenolic and total flavonoid content and in-vitro antioxidant properties of hydro-alcoholic and water extracts of salvia deserti growing wild in jordan. Jordan J Chem. 2017;12(1):11–9. wosuid: wos:000410352300002
Choudhary MI, Hussain A, Ali Z, Adhikari A, Sattar SA, Ayatollahi SAM, Rahman A, Majid A. Diterpenoids including a novel dimeric conjugate from Salvia leriaefolia. Planta Med. 2012;78(3):269–75. https://doi.org/10.1055/s-0031-1280454
Kamatou GPP, Makunga NP, Ramogola WPN, Viljoen AM. South African Salvia species: A review of biological activities and phytochemistry. J Ethnopharmacol. 2008 Oct 28;119(3):664–72. https://doi.org/10.1016/j.jep.2008.06.030
Moridi Farimani M, Miran M. Labdane diterpenoids from Salvia reuterana. Phytochemistry. 2014;108:264–9. https://doi.org/10.1016/j.phytochem.2014.08.024
Zengin G, Llorent-Martínez EJ, Fernández-de Córdova ML, Bahadori MB, Mocan A, Locatelli M, Aktumsek A. Chemical composition and biological activities of extracts from three Salvia species: S. blepharochlaena, S. euphratica var. leiocalycina, and S. verticillata subsp. amasiaca. Ind Crops Prod. 2018;111:11–21. doi:10.1016/j.indcrop.2017.09.065
Çolak NU, Yıldırım S, Bozdeveci A, Yaylı N, Çoşkunçelebi K, Fandaklı S, Yaşar A. Essential oil composition, antimicrobial and antioxidant activities of Salvia staminea. Rec. Nat. Prod. 2018. https://doi.org/10.25135/rnp.08.17.03.013
Kilic O. Chemical composition of four Salvia L. species from Turkey: A chemotaxonomic approach. J Essent Oil Bear Plants. 2016;19(1):229–35. https://doi.org/10.1080/0972060X.2014.958560
Hedge IC. Salvia l. Flora Turkey East Aegean islands. 1982;7:400–61.
Erdogan MK, Toy Y, Gundogdu R, Gecibesler IH, Sever A, Yapar Y, Behçet L, Zengin G. Assessment of cytotoxic, apoptotic, enzyme inhibitory, and antioxidant properties, and phytochemical characterization of ethanolic extract from Cionura erecta. Food Biosci. 2025;65:106082. https://doi.org/10.1016/j.fbio.2025.106082
Parker C, Chambers AC, Flanagan DJ, Ho JWY, Collard TJ, Ngo G, et al. BCL-3 loss sensitises colorectal cancer cells to DNA damage by targeting homologous recombination. DNA Repair (Amst). 2022;115:103331. https://doi.org/10.1016/j.dnarep.2022.103331
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621–81. https://doi.org/10.1124/pr.58.3.10
Li J, Wang R, Kong Y, Broman MM, Carlock C, Chen L, Li Z, Farah E, Ratliff TL, Liu X. Targeting Plk1 to enhance efficacy of olaparib in castration-resistant prostate cancer. Mol Cancer Ther. 2017;16(3):469–79. https://doi.org/10.1158/1535-7163.MCT-16-0361
Gomez V, Gundogdu R, Gomez M, Hoa L, Panchal N, O’Driscoll M, Hergovich A. Regulation of DNA damage responses and cell cycle progression by hMOB2. Cell Signal. 2015;27(2):326–39. https://doi.org/10.1016/j.cellsig.2014.11.016
Zomer HD, Varela GK dos S, Delben PB, Heck D, Jeremias T da S, Trentin AG. In vitro comparative study of human mesenchymal stromal cells from dermis and adipose tissue for application in skin wound healing. J Tissue Eng Regen Med. 2019;13(5):729–41. https://doi.org/10.1002/term.2820
Bettoun A, Joffre C, Zago G, Surdez D, Vallerand D, Gundogdu R, Sharif AAD, Gomez M, Cascone I, Meunier B, White MA, Codogno P, Parrini MC, Camonis JH, Hergovich A. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation. Oncotarget. 2016 ;7(28):44142–60. https://doi.org/10.18632/oncotarget.9875
Lee PY, Costumbrado J, Hsu CY, Kim YH. Agarose gel electrophoresis for the separation of DNA fragments. JoVE (Journal Vis Exp. 2012;(62):e3923. https://doi.org/10.3791/3923
Balewska A, Szczechla M. Plants: past and present in the battle against diabetes. J Med Sci. 2024;93(1):e896–e896. https://doi.org/10.20883/medical.e896
Monika K, Anna B, Jana K, Daniel P, Bogusław C. Products of plant origin–benefits and the potential risk for the consumer. J Med Sci. 2017;86(1). https://doi.org/10.20883/jms.2017.143
Okolie NP, Olude OM. Isolation of some bioactive compounds in the methanol extract of ficus exasperata leaves and the effect of the extract on ınflammatory markers in 1, 2 dimethylhydrazine ınduced colorectal cancer in rats. J Med Sci. 2025;94(1):e1232–e1232. https://doi.org/10.20883/medical.e1232
Tang C, Livingston MJ, Safirstein R, Dong Z. Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 2022 191 [Internet]. 2022 [cited 2023 Jan 3];19(1):53–72. https://doi.org/10.1038/s41581-022-00631-7
Ahmed M, Khan MI, Khan MR, Muhammad N, Khan AU, Khan RA. Role of medicinal plants in oxidative stress and cancer. Open Access Sci Reports. 2013;2(2):2–4. doi:10.4172/scientificreports.641
David B, Wolfender JL, Dias DA. The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev. 2015;14(2):299–315. https://doi.org/10.1007/s11101-014-9367-z
Bai J, Qin Q, Li S, Cui X, Zhong Y, Yang L, An L, Deng D, Zhao J, Zhang R, Bai S. Salvia miltiorrhiza inhibited lung cancer through aerobic glycolysis suppression. J Ethnopharmacol. 2024;331. https://doi.org/10.1016/j.jep.2024.118281
Nasrabadi NS, Vedad A, Asadi K, Poorbagher MRM, Tabrizi NA, Dorooki K, Sabouni RS, Moghadam MB, Shafaei N, Karimi E, Oskoueian E. Nanoliposome‐loaded phenolics from Salvia leriifolia Benth and its anticancer effects against induced colorectal cancer in mice. Biotechnol Appl Biochem. 2024;(71):641–50. https://doi.org/10.1002/bab.2564
Nicolella HD, Fernandes G, Ozelin SD, Rinaldi-Neto F, Ribeiro AB, Furtado RA, Senedese JM, Esperandim TR, Veneziani RCS, Tavares DC Manool, a diterpene from Salvia officinalis, exerts preventive effects on chromosomal damage and preneoplastic lesions. Mutagenesis. 2021;36(2):177–85. https://doi.org/10.1093/mutage/geab001
Keshavarz M, Bidmeshkipour A, Mostafaie A, Mansouri K, Mohammadi-Motlagh H. Anti tumor activity of Salvia officinalis is due to its anti-angiogenic, anti-migratory and anti-proliferative effects. Cell J. 2011;12(4):477–82.
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int J Mol Sci. 2022;23(3):1532. https://doi.org/10.3390/ijms23031532
Rejhová A, Opattová A, Čumová A, Slíva D, Vodička P. Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem. 2018;144:582–94. https://doi.org/10.1016/j.ejmech.2017.12.039
Ju YH, Doerge DR, Woodling KA, Hartman JA, Kwak J, Helferich WG. Dietary genistein negates the inhibitory effect of letrozole on the growth of aromatase-expressing estrogen-dependent human breast cancer cells (MCF-7Ca) in vivo. Carcinogenesis. 2008;29(11):2162–8. https://doi.org/10.1093/carcin/bgn161
Heaney ML, Gardner JR, Karasavvas N, Golde DW, Scheinberg DA, Smith EA, O’Connor OA. Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs. Cancer Res. 2008;68(19):8031–8. https://doi.org/10.1158/0008-5472.CAN-08-1490
Dickey DT, Wu YJ, Muldoon LL, Neuwelt EA. Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular, and in vivo levels. J Pharmacol Exp Ther. 2005;314(3):1052–8. https://doi.org/10.1124/jpet.105.087601
Vatan, Ö. (2019). Rosmarinik asidin cisplatine karşı antisitotoksik ve antigenotoksik etkisinin a549 ve beas-2b hücre hatlarında araştırılması. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 45(3), 263-270.doi:10.32708/uutfd.613912
Guzmán C, Bagga M, Kaur A, Westermarck J, Abankwa D. ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One. 2014;9(3):e92444. https://doi.org/10.1371/journal.pone.0092444
Dai Y, Sun X, Li B, Ma H, Wu P, Zhang Y, Zhu M, Li HM, Qin M, Wu CZ. The effect of hispidulin, a flavonoid from salvia plebeia, on human nasopharyngeal carcinoma Cne-2z cell proliferation, migration, invasion, and apoptosis. Molecules. 2021;26(6):1604. https://doi.org/10.3390/molecules26061604
Chen B, Huang C, Zhang Y, Tang X, Li S, Wang Q, Lin Y. Salvia bowleyana Dunn root is a novel source of salvianolic acid B and displays antitumor effects against gastric cancer cells. Oncol Lett. 2020;20(1):817–27. https://doi.org/10.3892/ol.2020.11611
Jiang YL, Xun Y. Molecular mechanism of salvia miltiorrhiza in the treatment of colorectal cancer based on network pharmacology and molecular docking technology. Drug Des Devel Ther. 2024;425–41. https://doi.org/10.2147/DDDT.S443102
Zanrè V, Campagnari R, Cerulli A, Masullo M, Cardile A, Piacente S, Menegazzi M. Salviolone from Salvia Miltiorrhiza roots impairs cell cycle progression, colony formation, and metalloproteinase-2 activity in A375 melanoma cells: involvement of P21 (Cip1/Waf1) expression and STAT3 phosphorylation. Int J Mol Sci. 2022;23(3):1121. https://doi.org/10.3390/ijms23031121
Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG, Petasis NA, Chen TC, Schönthal AH. Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid–based proteasome inhibitors. Blood, J Am Soc Hematol. 2009;113(23):5927–37. https://doi.org/10.1182/blood-2008-07-171389
Horibata S, Vo T V., Subramanian V, Thompson PR, Coonrod SA. Utilization of the soft agar colony formation assay to identify inhibitors of tumorigenicity in breast cancer cells. J Vis Exp. 2015;2015(99):e52727. https://doi.org/10.3791/52727
Abi-Rizk A, Rayess Y El, Iriti M, Tabet E, Mezher R, Beyrouthy M El. Chemical composition, antitumor and antioxidant effects of four lebanese plants extracts on human pulmonary adenocarcinoma. Nat Prod Res. 2021;35(22):4861–4. https://doi.org/10.1080/14786419.2020.1737056
Allegri L, Domenis R, Navarra M, Celano M, Russo D, Capriglione F, Damante G, Baldan F. Dihydrotanshinone exerts antitumor effects and improves the effects of cisplatin in anaplastic thyroid cancer cells. Oncol Rep. 2021;46(3):1–16. https://doi.org/10.3892/or.2021.8155
Cao Y, Tang H, Wang G, Li P, Song Z, Li W, Sun X, Zhong X, Yu Q, Zhu S, Zhu L. Targeting survivin with Tanshinone IIA inhibits tumor growth and overcomes chemoresistance in colorectal cancer. Cell Death Discov. 2023;9(1):351. https://doi.org/10.1038/s41420-023-01622-8
Kashyap A, Umar SM, JR AD, Prasad CP. Dihydrotanshinone-I modulates epithelial mesenchymal transition (EMT) thereby impairing migration and clonogenicity of triple negative breast cancer cells. Asian Pacific J Cancer Prev APJCP. 2021;22(7):2177. https://doi.org/10.31557/APJCP.2021.22.7.2177
Jonkman JEN, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, Colarusso P. An introduction to the wound healing assay using live-cell microscopy. Cell Adh Migr. 2014;8(5):440–51. https://doi.org/10.4161/cam.36224
Atmaca H, Bozkurt E. Apoptotic and anti-angiogenic effects of Salvia triloba extract in prostate cancer cell lines. Tumor Biol. 2016;37(3):3639–46. https://doi.org/10.1007/s13277-015-4208-2
Zare H. Effects of salvia officinalis extract on the breast cancer cell line. SciMedicine J. 2019;1(1):25–9. https://doi.org/10.28991/SciMedJ-2019-0101-4
Erdoğan MK, Ağca CA, Aşkın H. İnsan kolorektal kanser hücrelerinde Pistacia eurycarpa ekstraktlarıyla kombine 5-florourasilin artırılmış antiproliferatif ve apoptotik etkileri. Biol Divers Conserv. 2019;12(1):27–38. doi:10.5505/biodicon.2019.57441
Muscella A, Stefàno E, De Bellis L, Nutricati E, Negro C, Marsigliante S. Antitumor and antimigration effects of Salvia clandestina L. extract on osteosarcoma cells. Ann N Y Acad Sci. 2021;1500(1):34–47. https://doi.org/10.1111/nyas.14601
Sinala S, Dewi STR, Pakadang SR, Sabir M, Kamal SE. Anti-cancer potential of Nggorang leaves extract (Salvia occidentalis Sw.) as a protein P53 supressor in T47D cells. Pharmacogn J. 2021;(13):1036–45. doi:10.5530/pj.2021.13.134
Sittihan S, Sopha P, Ruchirawat S. Synthesis and anticancer activity of pentafluorobenzenesulfonamide derivatives as caspase-dependent apoptosis-ınducing agents. ChemMedChem. 2022;17(3):e202100637. https://doi.org/10.1002/cmdc.202100637
Yosef R, Pilpel N, Papismadov N, Gal H, Ovadya Y, Vadai E, Miller S, Porat Z, Ben-Dor S, Krizhanovsky V. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J [Internet]. 2017 [cited 2022 Nov 4];36(15):2280. https://doi.org/10.15252/embj.201695553
Xia R, Sheng X, Xu X, Yu C, Lu H. Hesperidin induces apoptosis and GO/G1 arrest in human non-small cell lung cancer A549 cells. Int J Mol Med. 2018 Jan 1;41(1):464–72. https://doi.org/10.3892/ijmm.2017.3250
Crowell JA, Steele VE, Fay JR. Targeting the AKT protein kinase for cancer chemoprevention. Mol Cancer Ther. 2007;6(8):2139–48. https://doi.org/10.1158/1535-7163.MCT-07-0120
Islam M, Jones S, Ellis I. Role of akt/protein kinase B in cancer metastasis. Biomedicines. 2023;11(11):3001. https://doi.org/10.3390/biomedicines11113001
Erdoğan MK, AĞCA CA, Askin H. Enhanced antiproliferative and apoptotic effects of 5-fluorouracil by combined with Pistacia eurycarpa extracts on human colorectal cancer cells. Biol Divers Conserv. 2019;12(1):27–38. https://doi.org/10.5505/biodicon.2019.57441
Jin U, Suh S, Chang HW, Son J, Lee SH, Son K, et al. Tanshinone IIA from Salvia miltiorrhiza BUNGE inhibits human aortic smooth muscle cell migration and MMP-9 activity through AKT signaling pathway. J Cell Biochem. 2008;104(1):15–26. https://doi.org/10.1002/jcb.21599
Jiang Y, Ji F, Liu Y, He M, Zhang Z, Yang J, Wang N, Zhong C, Jin Q, Ye X, Chen T. Cisplatin-induced autophagy protects breast cancer cells from apoptosis by regulating yes-associated protein. Oncol Rep. 2017;38(6):3668–76. https://doi.org/10.3892/or.2017.6035
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9–22. https://doi.org/10.1016/j.ccr.2007.05.008
Yu J ru, Liu Y yue, Gao Y yang, Qian L hui, Qiu J lin, Wang PP, Zhan GJ. Diterpenoid tanshinones inhibit gastric cancer angiogenesis through the PI3K/Akt/mTOR signaling pathway. J Ethnopharmacol. 2024;324:117791. https://doi.org/10.1016/j.jep.2024.117791
Woods D, Turchi JJ. Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol Ther. 2013;14(5):379–89. https://doi.org/10.4161/cbt.23761
Goldstein M, Kastan MB. The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu Rev Med. 2015;66(1):129–43. https://doi.org/10.1146/annurev-med-081313-121208
Mauri G, Arena S, Siena S, Bardelli A, Sartore-Bianchi A. The DNA damage response pathway as a land of therapeutic opportunities for colorectal cancer. Ann Oncol [Internet]. 2020;31(9):1135–47. doi:10.1016/j.annonc.2020.05.027
Telang N. Anti‑proliferative and pro‑apoptotic effects of rosemary and constituent terpenoids in a model for the HER‑2‑enriched molecular subtype of clinical breast cancer. Oncol Lett. 2018;16(4):5489–97. https://doi.org/10.3892/ol.2018.9238
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The copyright to the submitted manuscript is held by the Author, who grants the Journal of Medical Science (JMS) a nonexclusive licence to use, reproduce, and distribute the work, including for commercial purposes.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

