Passiflora incarnata extract-induced VEGF and TGF-β1 mRNA expression in the cardiovascular system using the rat model of type 2 diabetes
DOI:
https://doi.org/10.20883/medical.e1443Keywords:
Passiflora incarnata, vascular endothelial growth factor, vascular endothelial growth factor receptors, transforming growth factor β1, type 2 diabetes mellitusAbstract
Aim. To investigate the possible effects of Passiflora extract on VEGF and TGF-β1 mRNA expression – growth factors closely related to the development of diabetes in the cardiovascular system.
Material and methods. The animal model of type 2 diabetes, rich-fat/STZ Wistar rats, was used. Animals were randomised into four groups: Passiflora-treated type 2 diabetes mellitus model group; metformin-treated type 2 diabetes mellitus model group; placebo-treated type 2 diabetes mellitus model group; and placebo-treated non-diabetic control group. Passiflora incarnata leaf extract was administered orally once daily for eight consecutive weeks. mRNA VEGF, VEGF-R1, VEGF-R2 and TGF-β1 expression were measured in the myocardium and the aorta.
Results. Passiflora incarnata extract increases VEGF and VEGFR2 mRNA expression in the myocardium of rats with type 2 diabetes and decreases expression in the aortal wall. The expression of TGF-β1 mRNA in both the myocardium and the aorta is reduced in Passiflora incarnata-treated rats with diabetes. Most observed effects are independent of the animals' current metabolic status.
Conclusions. The current data provide novel findings on the beneficial effects of Passiflora extract on the myocardium in the context of type 2 diabetes, potentially through mechanisms involving VEGF and TGF-β1. However, the significance of the impact of Passiflora extract on the aorta wall via VEGF and TGF-β1 is uncertain.
Downloads
References
Raghavan S, Vassy JL, Ho YL, Song RJ, Gagnon DR, Cho K, Wilson PWF, Phillips LS. Diabetes Mellitus-Related All-Cause and Cardiovascular Mortality in a National Cohort of Adults. J Am Heart Assoc. 2019 Feb 19;8(4):e011295. https://doi.org/10.1161/JAHA.118.011295. PMID: 30776949; PMCID: PMC6405678.
Michel JB, Virmani R, Arbustini E, Pasterkamp G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J. 2011 Aug;32(16):1977-85, 1985a, 1985b, 1985c. https://doi.org/10.1093/eurheartj/ehr054. Epub 2011 Mar 12. PMID: 21398643; PMCID: PMC3155759.
Attanasio S, Schaer G. Therapeutic angiogenesis for the management of refractory angina: current concepts. Cardiovasc Ther. 2011 Dec;29(6):e1-e11. https://doi.org/10.1111/j.1755-5922.2010.00153.x. Epub 2010 Apr 9. PMID: 20406245.
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev. 2021 Sep;176:113904. https://doi.org/10.1016/j.addr.2021.113904. Epub 2021 Jul 29. PMID: 34331987; PMCID: PMC8444077.
Pérez-Gutiérrez L, Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat Rev Mol Cell Biol. 2023 Nov;24(11):816-834. https://doi.org/10.1038/s41580-023-00631-w. Epub 2023 Jul 25. PMID: 37491579.
Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med. 2020 Feb 13;217(3):e20190103. https://doi.org/10.1084/jem.20190103. PMID: 32997468; PMCID: PMC7062524.
Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol. 2011 Oct;51(4):600-6. https://doi.org/10.1016/j.yjmcc.2010.10.033. Epub 2010 Nov 6. PMID: 21059352; PMCID: PMC3072437.
Kim M, Lim HS, Lee HH, Kim TH. Role Identification of Passiflora Incarnata Linnaeus: A Mini Review. J Menopausal Med. 2017 Dec;23(3):156-159. https://doi.org/10.6118/jmm.2017.23.3.156. Epub 2017 Dec 29. PMID: 29354614; PMCID: PMC5770524.
Miroddi M, Calapai G, Navarra M, Minciullo PL, Gangemi S. Passiflora incarnata L.: ethnopharmacology, clinical application, safety and evaluation of clinical trials. J Ethnopharmacol. 2013 Dec 12;150(3):791-804. https://doi.org/10.1016/j.jep.2013.09.047. Epub 2013 Oct 17. PMID: 24140586.
Gupta RK, Kumar D, Chaudhary AK, Maithani M, Singh R. Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. J Ethnopharmacol. 2012 Feb 15;139(3):801-6. https://doi.org/10.1016/j.jep.2011.12.021. Epub 2011 Dec 28. PMID: 22212504.
Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005 Oct;52(4):313-20. https://doi.org/10.1016/j.phrs.2005.05.004. PMID: 15979893.
Suciu F, Pușcașu C, Mihai DP, Ungurianu A, Andrei C, Ancuceanu RV, Gîrd CE, Ciobanu AM, Blebea NM, Popovici V, Ghiță CIV, Negres S. Evaluation of the Antihyperalgesic Potential of Morus alba, Angelica archangelica, Valeriana officinalis, and Passiflora incarnata in Alloxan-Induced Diabetic Neuropathy in Rats. Curr Issues Mol Biol. 2025 Sep 4;47(9):719. https://doi.org/10.3390/cimb47090719. PMID: 41020842; PMCID: PMC12468037.
Ozarowski M, Piasecka A, Paszel-Jaworska A, de A. Chaves D. S, Romaniuk A, Rybczynska M, Gryszczynska A, Sawikowska A, Kachlicki P, Mikolajczak P.Ł, Seremak-Mrozikiewicz A, Klejewski A, Thiem B. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Rev. Bras. Farmacogn. 28, 179–191 (2018). https://doi.org/10.1016/j.bjp.2018.01.006.
Dworacka M, Winiarska H. The application of plasma 1,5-anhydro-D-glucitol for monitoring type 2 diabetic patients. Dis Markers. 2005;21(3):127-32. https://doi.org/10.1155/2005/251068. PMID: 16276006; PMCID: PMC3850583.
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156-9. https://doi.org/10.1006/abio.1987.9999. PMID: 2440339.
Tham E, Gielen AW, Khademi M, Martin C, Piehl F. Decreased expression of VEGF-A in rat experimental autoimmune encephalomyelitis and in cerebrospinal fluid mononuclear cells from patients with multiple sclerosis. Scand J Immunol. 2006 Dec;64(6):609-22. https://doi.org/10.1111/j.1365-3083.2006.01851.x. Erratum in: Scand J Immunol. 2007 Mar;65(3):310. PMID: 17083617.
van Albada ME, du Marchie Sarvaas GJ, Koster J, Houwertjes MC, Berger RM, Schoemaker RG. Effects of erythropoietin on advanced pulmonary vascular remodelling. Eur Respir J. 2008 Jan;31(1):126-34. https://doi.org/10.1183/09031936.00035607. Epub 2007 Sep 26. PMID: 17898019.
American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022 Jan 1;45(Suppl 1):S125-S143. https://doi.org/10.2337/dc22-S009. PMID: 34964831.
Perrotta P, Emini Veseli B, Van der Veken B, Roth L, Martinet W, De Meyer GRY. Pharmacological strategies to inhibit intra-plaque angiogenesis in atherosclerosis. Vascul Pharmacol. 2019 Jan;112:72-78. https://doi.org/10.1016/j.vph.2018.06.014. Epub 2018 Jun 19. PMID: 29933080.
Lan TH, Huang XQ, Tan HM. Vascular fibrosis in atherosclerosis. Cardiovasc Pathol. 2013 Sep-Oct;22(5):401-7. https://doi.org/10.1016/j.carpath.2013.01.003. Epub 2013 Jan 30. PMID: 23375582.
Ożarowski M, Karpiński TM. Extracts and Flavonoids of Passiflora Species as Promising Anti-inflammatory and Antioxidant Substances. Curr Pharm Des. 2021;27(22):2582-2604. https://doi.org/10.2174/1381612826666200526150113. PMID: 32452323.
Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation. 2002 Jan 22;105(3):373-9. https://doi.org/10.1161/hc0302.102143. PMID: 11804995.
Shibuya M. VEGF-VEGFR Signals in Health and Disease. Biomol Ther (Seoul). 2014 Jan;22(1):1-9. https://doi.org/10.4062/biomolther.2013.113. PMID: 24596615; PMCID: PMC3936422.
Waltenberger J. New Horizons in Diabetes Therapy: The Angiogenesis Paradox in Diabetes: Description of the Problem and Presentation of a Unifying Hypothesis. Immun Endoc Metab Agents Med Chem. 2007;7:87-93. https://doi.org/10.2174/187152207779802536
Waltenberger J. VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus. Biochem Soc Trans. 2009 Dec;37(Pt 6):1167-70. https://doi.org/10.1042/BST0371167. PMID: 19909240.
Sasso FC, Carbonara O, Persico E, D'Ambrosio R, Coppola L, Nasti R, Campana B, Moschella S, Torella R, Cozzolino D. Increased vascular endothelial growth factor mRNA expression in the heart of streptozotocin-induced diabetic rats. Metabolism. 2003 Jun;52(6):675-8. https://doi.org/10.1016/s0026-0495(03)00064-7. PMID: 12800090.
Liu C, Liu R, Fu H, Li J, Wang X, Cheng L, Korantzopoulos P, Tse G, Li G, Liu T. Pioglitazone attenuates atrial remodeling and vulnerability to atrial fibrillation in alloxan-induced diabetic rabbits. Cardiovasc Ther. 2017;35(5):3218–21.
Jesmin S, Sakuma I, Hattori Y, Fujii S, Kitabatake A. Long-acting calcium channel blocker benidipine suppresses expression of angiogenic growth factors and prevents cardiac remodelling in a Type II diabetic rat model. Diabetologia. 2002 Mar;45(3):402-15. https://doi.org/10.1007/s00125-001-0765-6. PMID: 11914746.
Goumans MJ, Ten Dijke P. TGF-β1 Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol. 2018 Feb 1;10(2):a022210. https://doi.org/10.1101/cshperspect.a022210. PMID: 28348036; PMCID: PMC5793760.
Panutsopulos D, Papalambros E, Sigala F, Zafiropoulos A, Arvanitis DL, Spandidos DA. Protein and mRNA expression levels of VEGF-A and TGF-beta1 in different types of human coronary atherosclerotic lesions. Int J Mol Med. 2005;15:603–10.
Azimi-Nezhad M. Vascular endothelial growth factor from embryonic status to cardiovascular pathology. Rep Biochem Mol Biol. 2014 Apr;2(2):59-69. PMID: 26989723; PMCID: PMC4757048.
Jin X, Ge X, Zhu DL, Yan C, Chu YF, Chen WD, Liu J, Gao PJ. Expression and function of vascular endothelial growth factor receptors (Flt-1 and Flk-1) in vascular adventitial fibroblasts. J Mol Cell Cardiol. 2007 Sep;43(3):292-300. https://doi.org/10.1016/j.yjmcc.2007.06.002. Epub 2007 Jun 18. PMID: 17651752.
Kimura C, Konishi S, Hasegawa M, Oike M. Development of vascular smooth muscle contractility by endothelium-derived transforming growth factor β proteins. Pflugers Arch. 2014 Feb;466(2):369-80. https://doi.org/10.1007/s00424-013-1329-6. Epub 2013 Jul 26. PMID: 23887380.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The copyright to the submitted manuscript is held by the Author, who grants the Journal of Medical Science (JMS) a nonexclusive licence to use, reproduce, and distribute the work, including for commercial purposes.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

