Isolation of Some Bioactive Compounds in the Methanol Extract of Ficus exasperata Leaves and the Effect of the Extract on Inflammatory Markers in 1,2 Dimethylhydrazine Induced Colorectal Cancer in Rats.

Authors

DOI:

https://doi.org/10.20883/medical.e1232

Keywords:

colorectal cancer, 1,2-dimethylhydrazine, inflammation, bioactive compounds, antioxidants

Abstract

Background. Colorectal cancer remains the third dominant cancer and is one of the leading cancer-related deaths in the world. The current investigation explores the chemoprotective roles of Ficus exasperata against inflammation and oxidative stress in 1,2-dimethylhydrazine (DMH)-induced colorectal cancer in rats. Some bioactive compounds were also isolated.

Material and methods. Forty-eight Wistar rats were grouped in 8 cages; group 1; control, group 2 was treated with 500mg/kg body weight of extract, group 3 received DMH twice a week, group 4 was treated with both the extract (500mg/kg b.w) and DMH, group 5 was treated with the extract (750mg/kg b.w) and DMH, group 6 was pretreated with the extract before DMH administration, group 7 was given DMH before the commencement of extract and group 8 was given the carcinogen and treated with 12.5mg/kg b.w of 5-fluorouracil simultaneously. Using high-performance liquid chromatography some bioactive compounds were isolated from the leaves extract of Ficus exasperata.

Results and conclusions. The bioactive compounds present in high quantity include; alpha-caryophyllene, isoquinoline, quercetin, kaempferol and rutin. After the 12th week, the animals were sacrificed. Total protein, catalase, superoxide dismutase and glutathione peroxidase activities were statistically significantly lower in group 3 (p < 0.05) compared with other groups. Gene expression of the Interleukins and cyclooxygenase 2 were statistically reduced and significant in all the groups except group 3. The extract suppressed the inflammatory cascade and also boosted antioxidant activities. This might be a result of some anticancer compounds that were discovered during the isolation of the compounds present in the plant.

Downloads

References

Rajendran MS, Jayaraman S, Khan JS, Jasmine S, Prabhakaran R, Raju MV, Chandrasekaran MK, Ahalliya RM, Kannappan P, Palanisamy CP, Kanniappan GV. Investigating the colon toxicity and carcinogenic role of monosodium glutamate compared with Dimethylhydrazine in male Wistar rats: Exploring the link to childhood colon cancer risk. J. King Saud Uni. Sci. 2024; 36:103507. https://doi.org/10.1016/j.jksus.2024.103507

Burgos-Molina AM, Tellez-Santana T, Redondo M, Bravo-Romero MJ. The crucial role of inflammation and the immune system in colorectal cancer carcinogenesis: A comprehensive perspective. Int. J. Mol. Sci. 2024; 25:6188. https://doi.org/10.3390/ ijms2511618

Mak WY, Zhao M, Ng SC, Burisch J. The epidemiology of inflammatory bowel disease: East meets west. JGH, 2020; 35:380–389 doi: 10.1111/jgh.14872

Brown JC, Ma C, Shi Q, Couture F, Kuebler P, Kumar P, Tan B, Krishnamurthi S, Chang V, Goldberg RM,. O’Reilly EM, Shields AF, Meyerhardt JA. Inflammation, physical activity, and disease-free survival in stage III colon cancer: Cancer and Leukemia Group B–Southwest Oncology Group 80702 (Alliance). JNCI, 2024; 116(12);2032-2039 doi: 10.1093/jnci/djae203.

Shahgoli VK, Noorolyai S, Youshanlui MA, Saeidi H, Nasiri H, Mansoori B, Holmskov U, Baradaran B. Inflammatory bowel disease, colitis, and cancer: unmasking the chronic inflammation link. Int. J. Colorectal Dis, 2024; 39:173 https://doi.org/10.1007/s00384-024-04748

Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/ STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol, 2018; 15(4):234-248 doi: 10.1038/nrclinonc.2018.8.

Janion K, Strzelczyk JK, Walkiewicz KW, Biernacki K, Copija A, Szczepanska E, Nowakowska-Zajdel E. Evaluation of Malondialdehyde Level, Total Oxidant/Antioxidant Status and Oxidative Stress Index in Colorectal Cancer Patients. Metabolites, 2022; 12:1118. https://doi.org/10.3390/ metabo12111118

Olude OM, Asoya VE, Uchenna HI. Phytochemical and nutritional composition of crude powder and ethanol extract of Annona muricata leaves. TJNPR, 2020; 4(7):315-318 doi.org/10.26538/tjnpr/v4i7.11

Rodríguez-Negrete EV, Morales-Gonzalez A, MadrigalSantillán EO, Sánchez-Reyes K, Álvarez-González I, MadrigalBujaidar E, Valadez-Vega C, Chamorro-Cevallos G, Garcia-Melo LF, Morales-González JA. Phytochemicals and Their Usefulness in the Maintenance of Health. Plants, 2024; 13:523. https://doi.org/ 10.3390/plants13040523

Zaman W. Morphology, Palynology and Phytochemicals of Medicinal Plants. Horticulturae, 2024; 10:202. https://doi.org/10.3390/ horticulturae10030202

Alemu M, Lulekal E, Asfaw Z, Warkineh B, Debella A, Abebe A, Degu S, Debebe E. Antibacterial activity and phytochemical screening of traditional medicinal plants most preferred for treating infectious diseases in Habru District, North Wollo Zone, Amhara Region, Ethiopia. PLOS ONE, 2024; 19(3):e0300060. https://doi.org/10.1371/journal. pone.0300060

Raudone L, Savickiene N. Phytochemical Profiles of Plant Materials: From Extracts to Added Value Ingredients. Plants, 2024; 13:964. https://doi.org/10.3390/plants13070964

Olude OM, Omoregie, FO. Antioxidant potential of ethanol extract of annona muricata leaves and its inhibitory effect on lipid peroxidation in 1,2-dimethylhydrazine induced colon carcinogenesis. J. Biol. Res. 2023b; 21(3):2079-2090 https://dx.doi.org/10.4314/br.v21i3.2

Olude OM, Chukwu OJ. Protective effect of ethanol extract of annona muricata leaves on hematological profile, histology and oxidative stress in 1,2 dimethylhydrazine-induced colorectal carcinogenesis in rats. JASEM, 2023a; 27(2):257-265 DOI: https://dx.doi.org/10.4314/jasem.v27i2.11

Elekofehinti OO, Lawal AO, Ejelonu OC, Molehin OR, Famusiwa CD. Involvement of fat mass and obesity gene (FTO) in the anti-obesity action of Annona muricata Annonaceae: in silico and in vivo studies. IJDMD, 2020; https://doi.org/10.1007/s40200-020-00491-7.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951; 193:265–275 PMID: 14907713.

Cohen G, Denbliec D, Marcus S. Measurement of catalase activity in tissue extracts. Anal. Biochem, 1970; 34:30-38 doi: 10.1016/0003-2697(70)90083-7

Misra HP, Fridovich I. The role of superoxide anion in the auto oxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem, 1972; 247:3170-3175 PMID: 4623845.

Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med, 1967; 70:158-169 PMID: 6066618.

Cizmarova B, Hubkova B, Birkova A. Quercetin as an effective antioxidant against superoxide radical. J. Funct. Foods, 2023; 3(3):5-25 . DOI: https://www.doi.org/10.31989/ffs.v3i3.1076

Khan F, Niaz K, Maqbool F, Hassan FI, Abdollahi M, Venkata KCN, Nabavi SM, Bishayee A. Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients, 2016; 8:529; doi:10.3390/nu8090529

Massi A, Bortolini ID, Ragno D, Bernardi T, Sacchetti G, Tacchini M, De-Risi C, Research progress in the modification of quercetin leading to anticancer agents. Molecules, 2017; 22:1270; doi: :10.3390/molecules22081270

Hashemzaei M, Far AD, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, Sadegh SE, Tsarouha KN, Kouretas D, Tzanakakis G, Nikitovic D, Anisimov NY, Spandidos DA, Tsatsakis AM, Rezaee R. Anticancer and apoptosis‑inducing effects of quercetin in vitro and in vivo. Oncol. Rep, 2017; 38:819-828 doi: 10.3892/or.2017.5766

Adorisio S, Argentieri MP, Avato P, Caderni G, Chioccio S, Cirmi S, Delfi DV, Greco G, Hrelia P, Iriti M, Lenzi, M, Lombardo GE, Luceri C, Maugeri A, Montopoli M, Muscari I, Nani, MF, Navarra M, Gasperini S, Turrini E, Fimognari C. The molecular basis of the anticancer properties of quercetin. Pharmadvances, 2021; 3(3):496-520 Doi: 10.36118/pharmadvances.2021.10

Imran M, Salehi B, Sharifi-Rad J, Gondal TA, Saeed F, Imran A, Shahbaz M, Fokou PVT, Arshad MU, Khan H, Guerreiro SG, Martins N, Estevinho LM. Kaempferol: A key emphasis to its anticancer potential. Molecules, 2019; doi:10.3390/molecules24122277

Riahi-Chebbi I, Souid S, Othman H, Haoues M, Karoui H, Morel A, Srairi-Abid N, Essafi M, Essafi-Benkhadir K. The Phenolic compound kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci. Rep, 2019; 9:195 |DOI:10.1038/s41598-018-36808-z.

Choi JB, Kim JH, Lee H, Pak JN, Shim BS, Kim SH, Reactive oxygen species and p53 mediated activation of p38 and caspases is critically involved in kaempferol induced apoptosis in colorectal cancer cells. J. Agri. Food Chem, 2018; 66:9960-9967 doi: 10.1021/acs.jafc.8b02656

Lee HS, Cho HJ, Yu R, Lee KW, Chun HS, Park JH. Mechanisms underlying apoptosis-inducing effects of kaempferol in HT-29 human colon cancer cells. Int. J. Mol. Sci, 2014; 15:2722-2737 doi: 10.3390/ijms15022722.

Shahbaz M, Imran M, Alsagaby SA, Naeem H, Al-Abdulmonem W, Hussain M, Abdelgawad MA, El-Ghorab AH, Ghoneim MM, El-Sherbiny M, Atoki AV, Awuchi CG. Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol. Int. J. Food Prop, 2023; 26(1):1140-1166 DOI: 10.1080/10942912.2023.2205040

Lin JP, Yang JS, Lin JJ, Lai KC, Lu HF, Ma CY, Wu RSC, Wu KC, Chueh FS, Wood WG, Chung JG. Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Environ. Toxicol, 2012; 27(8):480-484 doi: 10.1002/tox.20662

Jayameen P, Sivakumari K, Ashok K, Rajesh S. Rutin: a potential anticancer drug against human colon cancer (hct116) cells. IJHPAS, 2018; 7(9):1731-1745

Nouri Z, Fakhri S, Nouri K, Wallace CE, Farzaei MH, Bishayee A. Targeting multiple signaling pathways in cancer: the rutin therapeutic approach. Cancers, 2020; 12:2276; doi:10.3390/cancers12082276

Chen H, Miao Q, Geng M, Liu J, Hu Y, Tian L, Pan J, Yang Y. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. Sci. World J, 2013; http://dx.doi.org/10.1155/2013/269165

Alonso-Castro AJ, Dominguez F, Garcia-Carranca A. Rutin exerts antitumor effects on nude mice bearing SW480 tumor. Arch. Med. Res, 2013; 44:346-351. doi: 10.1016/j.arcmed.2013.06.002.

Prasad R, Prasad B. A review on the chemistry and biological properties of rutin, a promising nutraceutical agent. Asian j. pharm. pharmacol., 2019; 5:1-20 DOI:10.31024/AJPP.2019.5.S1.1

Iranshahy M, Quinn RJ, Iranshah M. Biologically active isoquinoline alkaloids with drug-like properties from the genus Corydalis. RSC Adv, 2014; 4:15900–15913. DOI: 10.1039/c3ra47944

Danao KR, Malghade PM, Mahapatra DK, Motiwala MN, Mahajan UN. Progressive insights into the pharmacological importance of isoquinoline derivatives in modern therapeutics. Int. J. Curr. Res. Rev, 2021; 13(4):83-90. DOI: 10.31782/IJCRR.2021.13421

Lizuka N. Inhibitory effect of Coptidis Rhizoma and berberine on the proliferation of human esophageal cancer cell lines. Cancer Letters, 2000; 148:19-25. https://doi.org/10.1016/S0304-3835(99)00264-5

Choi JB, Kim JH, Lee H, Pak JN, Shim BS, Kim SH. Reactive oxygen species and p53 mediated activation of p38 and caspases is critically involved in kaempferol induced apoptosis in colorectal cancer cells. J. Agri. Food Chem, 2018; 66:9960-9967. doi: 10.1021/acs.jafc.8b02656

Havelek R, Seifrtova M, Kralovec K, Krocova E, Tejkalova V, Novotny I, Cahlíkova L, Safratova M, Opleta L, Bilkova Z, Vavrova I, Rezacova M. Comparative cytotoxicity of chelidonine and homochelidonine, the dimethoxy analogues isolated from Chelidonium majus L. (Papaveraceae), against human leukemic and lung carcinoma cells. J. Phymed 2016; 23:253–266. DOI: 10.1016/j.phymed.2016.01.001

Al-ghazzawi, A.M.; Anti-cancer activity of new benzyl isoquinoline alkaloid from Saudi plant Annona squamosa. BMC Chemistry, 2019; 13:1-6. https://doi.org/10.1186/s1306501905364

Yun D, Yoon SY, Park SJ, Park YJ. The anticancer effect of natural plant alkaloid isoquinolines. Int. J. Mol. Sci, 2021; 22:1653. https://doi.org/10.3390/ijms22041653

Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR. Therapeutic implications of caffeic acid in cancer and neurological diseases. Front. Oncol, 2022; 12:860508. doi: 10.3389/fonc.2022.860508

Korkina, L.; Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell. Mol. Bio, 2007; 53(1):15–25. PMID: 17519109.

Zdunska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol, 2018; 31(6):332–6. doi: 10.1159/000491755.

Dik VK, Bueno-de-Mesquita HB, Van-Oijen MG, Siersema PD, Uiterwaal CS, Van-Gils CH. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk—results from the epic cohort study. Int. J. Cancer, 2014; 135(2):401–12. doi: 10.1002/ijc.28655

Manju V, Nalini N. Effect of ginger on lipid peroxidation and antioxidant status in 1,2- dimethyl hydrazine induced experimental colon carcinogenesis. J. Biochem. Tech, 2010; 2(2):161-167

Khan NG, Kumar N, Ballal R, Datta D, Belle VS. Unveiling antioxidant and anti-cancer potentials of characterized Annona reticulata leaf extract in 1,2-dimethylhydrazine-induced colorectal cancer in Wistar rats. J Ayurveda Integr Med, 2021; 12:579-589. oi: 10.1016/j.jaim.2021.05.010.

Kasprzak A. The role of tumor microenvironment cells in colorectal cancer (CRC) cachexia. Int. J. Mol. Sci, 2021; 22, 1565. https://doi.org/10.3390/ijms22041565

Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 2012; 15(2):153–166. doi: 10.1016/j.cmet.2012.06.011.

Stanilov N, Miteva L, Deliysky T, Jovchev J, Stanilova S. Advanced colorectal cancer is associated with enhanced IL-23 and IL-10 serum levels, Lab Med 2010; 41(3):159b–163, https://doi.org/10.1309/LM7T43AQZIUPIO

Szkaradkiewicz A, Marciniak R, Chudzicka−Strugała I, Wasilewska A, Drews M, Majewski P, Karpinski T, Zwozdziak B. Proinflammatory cytokines and IL-10 in inflammatory bowel disease and colorectal cancer patients. Arch. Immunol. Ther. Exp. 2009; 57:291–294 DOI: 10.1007/s00005-009-0031-z

Lin Y, He Z, Ye J, Liu Z, She X, Gao X, Liang R. Progress in understanding the il-6/stat3 pathway in colorectal cancer. Onco Targets Ther, 2020; 13:13023–13032 doi: 10.2147/OTT.S278013

Waldner MJ, Foersch S, Neurath MF. Interleukin-6 – A key regulator of colorectal cancer development. Int. J. Bio Sci, 2012; 8(9):1248-1253. DOI: 10.7150/ijbs.4614

Zeng J, Tang Z, Liu S, Guo S. Clinicopathological significance of overexpression of interleukin-6 in colorectal cancer. World J Gastroenterol. 2017; 14; 23(10):1780-1786 doi: 10.3748/wjg.v23.i10.1780

Gunasekaran S, Venkatachalam K, Namasivayam N. Anti-inflammatory and anticancer effects of p-methoxycinnamic acid, an active phenylpropanoid, against 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Mol. Cell. Biochem, 2019; 451:117–129. doi: 10.1007/s11010-018-3398-5.

Downloads

Published

2025-03-31

Issue

Section

Original Papers

How to Cite

1.
Okolie NP, Olude OM. Isolation of Some Bioactive Compounds in the Methanol Extract of Ficus exasperata Leaves and the Effect of the Extract on Inflammatory Markers in 1,2 Dimethylhydrazine Induced Colorectal Cancer in Rats. JMS [Internet]. 2025 Mar. 31 [cited 2025 Apr. 1];94(1):e1232. Available from: https://jms.ump.edu.pl/index.php/JMS/article/view/1232