Innovations in inductively coupled plasma-mass spectrometry: bridging scientific fields
DOI:
https://doi.org/10.20883/medical.e1223Keywords:
ICP-MS, water, clay, blood, urineAbstract
Inductively coupled plasma mass spectrometry ICP-MS is a versatile analytical tool with several research uses and regular applications in many domains, including biological materials, environmental analysis, and geochemistry. This technique detects trace components in water, soil and clay, blood, urine, pharmaceutical products, and medicinal cases. Although other methods, such as atomic absorption and atomic emission, are still used by researchers, there has been a noticeable shift toward ICP-MS, notably over the last decade. Developing accurate and precise methods for measuring components at low concentrations is crucial for detecting abnormalities in the human body and detecting trace amounts of metal in many other species. ICP-MS is a viable approach for the elemental determination of biological fluids, water, clay, and pharmaceuticals because it allows for reliable analysis at trace and ultra-trace levels while maintaining a wide dynamic range. Many breakthroughs have been made in ICP-MS analytical capabilities over the last few years. This review discusses the most recent works that use trace element analysis by ICP-MS in several fields.
Downloads
References
Apostoli P. Elements in environmental and occupational medicine. J Chromatogr B. 2002 Oct;778(1-2):63-97. doi: 10.1016/S0378-4347(01)00442-X.
D’ilio S, Petrucci F, D’Amato M, Di Gregorio M, Senofonte O, Violante N. Method validation for determination of arsenic, cadmium, chromium and lead in milk by means of dynamic reaction cell inductively coupled plasma mass spectrometry. Anal Chim Acta. 2008 Aug;624(1):59-67. doi: 10.1016/j.aca.2008.06.024.
Ammann AA. Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool. J mass spectrum. 2007 Apr;42(4):419-27. doi: 10.1002/jms.1206.
Bortoli A, Gerotto M, Marchiori M, Palonta R, Troncon A. Applications of inductively coupled plasma mass spectrometry to the early detection of potentially toxic elements. Microchem J. 1992 Oct;46(2):167-73. doi: 10.1016/0026-265X(92)90034-Z.
Jones DR, Jarrett JM, Stukes D, Baer A, McMichael M, Wallon K, Xiao G, Jones RL. Development and validation of a biomonitoring method to measure As, Cr, and Ni in human urine samples by ICP-UCT-MS. Int J Hyg Environ Health. 2021 May;234:113713. doi: 10.1016/j.ijheh.2021.113713.
Aleluia AC, de Souza Nascimento M, dos Santos AM, dos Santos WN, Júnior AD, Ferreira SL. Analytical approach of elemental impurities in pharmaceutical products: a worldwide review. Spectrochim Acta Part B At. Spectrosc. 2023 Jul 1;205:106689. doi: 10.52711/2231-5675.2021.00038
Jreije I, Hadioui M, Wilkinson KJ. Sample preparation for the analysis of nanoparticles in natural waters by single particle ICP-MS. Talanta. 2022 Feb 1;238:123060. doi: 10.1016/j.talanta.2021.123060.
Abdul RM, Mutnuri L, Dattatreya PJ, Mohan DA. Assessment of drinking water quality using ICP-MS and microbiological methods in the Bholakpur area, Hyderabad, India. Environ Monit Assess. 2012 Mar;184:1581-92. doi: 10.1007/s10661-011-2062-2.
Li C, Chu S, Tan S, Yin X, Jiang Y, Dai X, Gong X, Fang X, Tian D. Towards higher sensitivity of mass spectrometry: a perspective from the mass analyzers. Front Chem. 2021 Dec;9:813359. doi: 10.3389/fchem.2021.813359.
Finn RS, Liu Y, Zhu Z, Martin M, Rugo HS, Diéras V, Im SA, Gelmon KA, Harbeck N, Lu DR, Gauthier E. Biomarker analyses of response to cyclin-dependent kinase 4/6 inhibition and endocrine therapy in women with treatment-naïve metastatic breast cancer. Clin Cancer Res. 2020 Jan;26(1):110-21. doi: 10.1158/1078-0432.CCR-19-0751.
Košler J, Sylvester PJ. Present trends and the future of zircon in geochronology: laser ablation ICPMS. Rev Mineral Geochem. 2003 Jan;53(1):243-75. doi: 10.2113/0530243.
Telgmann L, Lindner U, Lingott J, Jakubowski N. Analysis and speciation of lanthanoides by ICP-MS. Phys Sci Rev. 2016 Nov;1(11):20160058. doi: 10.1515/psr-2016-0058.
Todolí JL, Mermet JM. Sample introduction systems for the analysis of liquid microsamples by ICP-AES and ICP-MS. Spectrochimica Acta Part B: At Spectrosc. 2006 Mar;61(3):239-83. doi: 10.1016/j.sab.2005.12.010.
Wilschefski SC, Baxter MR. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin Biochem Rev. 2019 Aug;40(3):115-133. doi: 10.33176/AACB-19-00024.
Wilschefski SC, Baxter MR. Inductively coupled plasma mass spectrometry: introduction to analytical aspects. Clin Biochem Rev. 2019 Aug;40(3):115-33. doi: 10.33176/AACB-19-00024.
Meyer S, Markova M, Pohl G, Marschall TA, Pivovarova O, Pfeiffer AF, Schwerdtle T. Development, validation and application of an ICP-MS/MS method to quantify minerals and (ultra-) trace elements in human serum. J Trace Elem Med Biol. 2018 Sep;49:157-63. doi: 10.1016/j.jtemb.2018.05.012.
Rasic-Milutinovic Z, Jovanovic D, Bogdanovic G, Trifunovic J, Mutic J. Potential influence of selenium, copper, zinc and cadmium on L-thyroxine substitution in patients with Hashimoto thyroiditis and hypothyroidism. Exp Clin Endocrinol Diabete. 2017 Feb;125(02):79-85. doi: 10.1055/s-0042-116070.
Schultze B, Lind PM, Larsson A, Lind L. Whole blood and serum concentrations of metals in a Swedish population-based sample. Scand J Clin Lab Invest. 2014 Feb;74(2):143-8. doi: 10.3109/00365513.2013.864785.
Wilschefski SC, Baxter MR. Inductively coupled plasma mass spectrometry: Introduction to analytical aspects. Clin Biochem Rev. 2019 Aug;40(3):115-33. doi: 10.33176/AACB-19-00024.
Perrais M, Thomas A, Augsburger M, Lenglet S. Comparison of dried blood spot and microtube techniques for trace element quantification by ICP-MS. J Anal Toxicol. 2023 Mar;47(2):175-81. doi: 10.1093/jat/bkac054.
Laur N, Kinscherf R, Pomytkin K, Kaiser L, Knes O, Deigner HP. ICP-MS trace element analysis in serum and whole blood. PloS One. 2020 May;15(5):e0233357. doi: 10.1371/journal.pone.0233357.
Xu B, Zhang Y, Chen Y, Zeng M, Feng J, Tang J, Yu L. Simultaneous multielement analysis by ICP-MS with simple whole blood sample dilution and its application to uremic patients undergoing long-term hemodialysis. Scand J Clin Lab Invest. 2020 Feb;80(3):247-55. doi: 10.1080/00365513.2020.1729401.
Zeng HL, Li H, Lu J, Guan Q, Cheng L. Assessment of 12 metals and metalloids in blood of general populations living in Wuhan of China by ICP-MS. Biol Trace Elem Res. 2019 Aug;189:344-53. doi: 10.1007/s12011-018-1486-8.
Abad-Alvaro I, Leite D, Bartczak D, Cuello-Nunez S, Gomez-Gomez B, Madrid Y, Aramendia M, Resano M, Goenaga-Infante H. An insight into the determination of size and number concentration of silver nanoparticles in blood using single particle ICP-MS (spICP-MS): feasibility of application to samples relevant to in vivo toxicology studies. J Anal At Spectrom. 2021 Apr;36(6):1180-92. doi: 10.1039/D1JA00068C.
Cao Y, Feng J, Tang L, Yu C, Mo G, Deng B. A highly efficient introduction system for single cell-ICP-MS and its application to detection of copper in single human red blood cells. Talanta. 2020 Jan;206:120174. doi: 10.1016/j.talanta.2019.120174.
Li F, Lei X, Li H, Cui H, Guo W, Jin L, Hu S. Direct multi-elemental analysis of whole blood samples by LA-ICP-MS employing a cryogenic ablation cell. J Anal At Spectrom. 2023 Oct;38(1):90-6. doi: 10.1039/D2JA00282E.
Tanvir EM, Komarova T, Comino E, Sumner R, Whitfield KM, Shaw PN. Effects of storage conditions on the stability and distribution of clinical trace elements in whole blood and plasma: Application of ICP-MS. J Trace Elem Med Biol. 2021 Dec;68:126804. doi: 10.1016/j.jtemb.2021.126804.
Protano C, Astolfi ML, Canepari S, Vitali M. Urinary levels of trace elements among primary school-aged children from Italy: The contribution of smoking habits of family members. Sci Total Environ. 2016 Jul;557:378-85. doi: 10.1016/j.scitotenv.2016.03.073.
Oggiano R, Solinas G, Forte G, Bocca B, Farace C, Pisano A, Sotgiu MA, Clemente S, Malaguarnera M, Fois AG, P Pirina P. Trace elements in ALS patients and their relationships with clinical severity. Chemosphere. 2018 Apr;197:457-66. doi: 10.1016/j.chemosphere.2018.01.076.
Fernández-Peralbo MA, De Castro ML. Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis. Trends Anal Chem. 2012 Dec;41:75-85. doi: 10.1016/j.trac.2012.08.011.
Shen Y, Sun DY, Min Z. Determination of six arsenic species in urine by high-performance liquid chromatography-inductively coupled plasma-mass spectrometr. Chin J Ind Hyg Occup Dis. 2022 Dec;40(12):952-5. doi: 10.3760/cma.j.cn121094-20211231-00646.
Guo W, Zhou Q, Jia Y, Xu J. Cluster and factor analysis of elements in serum and urine of diabetic patients with peripheral neuropathy and healthy people. Biol Trace Elem Res. 2020 Mar;194(1):48-57. doi: 10.1007/s12011-019-01747-x.
Robotti E, Quasso F, Manfredi M, Gosetti F, Mazzucco E, Isidoro C, Marengo E. Determination by ICP-MS and multivariate data analysis of elemental urine excretion profile during the EDTA chelation therapy: A case study. J Trace Elem Med Biol. 2020 Dec;62:126608. doi: 10.1016/j.jtemb.2020.126608.
Toro-Román V, Siquier-Coll J, Bartolomé I, Grijota FJ, Muñoz D, Maynar-Mariño M. Copper concentration in erythrocytes, platelets, plasma, serum and urine: Influence of physical training. J Int Soc Sports Nutr. 2021 Dec;18:1-8. doi: 10.1186/s12970-021-00426-4.
Knoop A, Planitz P, Wüst B, Thevis M. Analysis of cobalt for human sports drug testing purposes using ICP- and LC-ICP-MS. Drug Test Anal. 2020 Nov;12(11-12):1666-72. doi: 10.1002/dta.2962.
Schmied A, Murawski A, Kolossa-Gehring M, Kujath P. Determination of trace elements in urine by inductively coupled plasma-tandem mass spectrometry–biomonitoring of adults in the German capital region. Chemosphere. 2021 Dec;285:131425. doi: 10.1016/j.chemosphere.2021.131425.
Robson AF, Lockett P, Tetlowand L, Chaloner C. Evaluation of 24-h urine containers for urine copper measurement by inductively coupled plasma mass spectrometry. Ann Clin Biochem. 2020 May;57(3):246-8. doi: 10.1177/0004563220915949.
Cao Y, Feng J, Tang L, Yu C, Mo G, Deng B. A highly efficient introduction system for single cell-ICP-MS and its application to detection of copper in single human red blood cells. Talanta. 2020 Jan;206:120174. doi: 10.1016/j.talanta.2019.120174.
Permyakov EA. Metal binding proteins. Encyclopedia. 2021 Mar;1(1):261-92. doi: 10.3390/encyclopedia1010024.
40. Cashman K. Calcium intake, calcium bioavailability and bone health. Br J Nutr. 2002 May;87(S2):S169-77. doi: 10.1079/BJN/2002534.
Tinawi M. Disorders of calcium metabolism: hypocalcemia and hypercalcemia. Cureus 2021 Jan;13(1):e12420. doi: 10.7759/cureus.12420.
Foster AW, Young TR, Chivers PT, Robinson NJ. Protein metalation in biology. Curr Opin Chem Biol. 2022 Feb;66:102095. doi: 10.1016/j.cbpa.2021.102095.
Llaver M, Fiorentini EF, Oviedo MN, Quintas PY, Wuilloud RG. Elemental speciation analysis in environmental studies: Latest trends and ecological impact. Int J Environ Res Public Health. 2021 Nov;18(22):12135. doi: 10.3390/ijerph182212135.
Huang J, Hu X, Zhang J, Li K, Yan Y, Xu X. The application of inductively coupled plasma mass spectrometry in pharmaceutical and biomedical analysis. J Pharm Biomed Anal. 2006 Feb;40(2):227-34. doi: 10.1016/j.jpba.2005.11.014.
da Silva AB, Arruda MA. Single-cell ICP-MS to address the role of trace elements at a cellular level. J Trace Elem Med Biol. 2023 Jan;75:127086. doi: 10.1016/j.jtemb.2022.127086.
Wang H, He M, Chen B, Hu B. Advances in ICP-MS-based techniques for trace elements and their species analysis in cells. J Anal At Spectrom. 2017 Jan;32(9):1650-9. doi: 10.1039/C6JA00414H.
Sussulini A, Becker JS. Application of laser microdissection ICP–MS for high resolution elemental mapping in mouse brain tissue: A comparative study with laser ablation ICP–MS. Talanta. 2015 Jan;132:579-82. doi: 10.1016/j.talanta.2014.10.001.
Petrova E, Pashkunova-Martic I, Schaier M, Gluhcheva Y, Pavlova E, Helbich TH, Keppler B, Ivanova J. Effects of subacute cadmium exposure and subsequent deferiprone treatment on cadmium accumulation and on the homeostasis of essential elements in the mouse brain. J Trace Elem Med Biol. 2022 Dec;74:127062. doi: 10.1016/j.jtemb.2022.127062.
Morrison JG, White P, McDougall S, Firth JW, Woolfrey SG, Graham MA, Greenslad D. Validation of a highly sensitive ICP-MS method for the determination of platinum in biofluids: application to clinical pharmacokinetic studies with oxaliplatin. J Pharm Biomed Anal. 2000 Dec;24(1):1-10. doi: 10.1016/S0731-7085(00)00377-0.
Kuznetsova OV, Mokhodoeva OB, Maksimova VV, Dzhenloda RK, Jarosz M, Shkinev VM, Timerbaev AR. High-resolution ICP-MS approach for characterization of magnetic nanoparticles for biomedical applications. J Pharm Biomed Anal. 2020 Sep;189:113479. doi: 10.1016/j.jpba.2020.113479.
Patel AB, Bundheliya AR, Vyas AJ, Patel NK, Patel AI, Lumbhani AN. A review on metal impurities in pharmaceuticals. Asian J Pharm Anal. 2021 Oct;11(3):212-22. doi: 10.52711/2231-5675.2021.00038.
Pohl P, Bielawska-Pohl A, Dzimitrowicz A, Jamroz P, Welna M. Impact and practicability of recently introduced requirements on elemental impurities. Trends Anal Chem. 2018 Apr;101:43-55. doi: 10.1016/j.trac.2017.09.011.
Chen W, Yang Y, Fu K, Zhang D, Wang Z. Progress in ICP-MS analysis of minerals and heavy metals in traditional medicine. Front Pharmacol. 2022 Jun;13:891273. doi: 10.3389/fphar.2022.891273.
Temerdashev ZA, Galitskaya OA, Bolshov MA. A novel method for the background signal correction in SP-ICP-MS analysis of the sizes of titanium dioxide nanoparticles in cosmetic samples. Molecules. 2022 Nov;27(22):7748. doi: 10.3390/molecules27227748.
Kuznetsova OV, Rubio GM, Keppler BK, Chin JM, Reithofer MR, Timerbaev AR. An ICP-MS-based assay for characterization of gold nanoparticles with potential biomedical use. Anal Biochem. 2020 Dec;611:114003. doi: 10.1016/j.ab.2020.114003.
Çiftçi TD. Determination of heavy metals and essential elements in nasal sprays and drops (Saline/Sea Water) and evaluation in terms of toxicity. Environ Sci Pollut Res. 2023 Sep;30(43):96938-47. doi: 10.1007/s11356-023-29133-0.
Pawlaczyk A, Gajek M, Balcerek M, Szynkowska-Jóźwik MI. Determination of metallic impurities by ICP-MS technique in eyeshadows purchased in Poland. Part I. Molecules. 2021 Nov;26(21):6753. doi: 10.3390/molecules26216753.
Whitty-Léveillé L, VanAernum ZL, Pavon JA, Murphy C, Neal K, Forest W, Gao X, Zhong W, Richardson DD, Schuessler HA. Determination of ultra-trace metal-protein interactions in co-formulated monoclonal antibody drug product by SEC-ICP-MS. Mabs. 2023 Dec;15(1):2199466. doi: 10.1080/19420862.2023.2199466.
Rezić I, Škoc MS, Majdak M, Jurić S, Stracenski KS, Vlahoviček-Kahlina K, Vinceković M. ICP-MS determination of antimicrobial metals in microcapsules. Molecules. 2022 May;27(10):3219. doi: 10.3390/molecules27103219.
Beltifa A, Alibi S, Turco VL, Mansour HB, Di Bella G. Identification and quantification of plasticizers, bisphenol, and environmental toxic mineral elements residues in medicines from Tunisian markets. Environ Sci Pollut Res. 2021 Sep;28(36):50462-70. doi: 10.1007/s11356-021-14221-w.
Charlier P, Corde D, Bourdin V, Martin T, Tessier V, Donnelly M, Knapp A, Alvarez JC. Toxicological analysis of a" poison vial" found in the remains of an SS soldier (Maltot, Normandy, France). Forensic Sci Med Pathol. 2022 Sep;18(3):244-50. doi: 10.1007/s12024-022-00476-3.
Balaram V, Copia L, Kumar US, Miller J, Chidambaram S. Pollution of water resources and application of ICP-MS techniques for monitoring and management—A comprehensive review. Geosystems Geoenvironment. 2023 Nov;2(4):100210. doi: 10.1016/j.geogeo.2023.100210.
Morin-Crini N, Lichtfouse E, Liu G, Balaram V, Ribeiro AR, Lu Z, Stock F, Carmona E, Teixeira MR, Picos-Corrales LA, Moreno-Piraján JC. Worldwide cases of water pollution by emerging contaminants: a review. Environ Chem Lett. 2022 Aug;20(4):2311-38. doi: 10.1007/s10311-022-01447-4.
Skorek R, Jablonska M, Polowniak M, Kita A, Janoska P, Buhl F. Application of ICP-MS and various computational methods for drinking water quality assessment from the Silesian District (Southern Poland). Cent Eur J Chem. 2012 Feb;10:71-84. doi: 10.2478/s11532-011-0110-y.
Gonzalez de Vega R, Lockwood TE, Xu X, Gonzalez de Vega C, Scholz J, Horstmann M, PA Doble PA, Clases D. Analysis of Ti-and Pb-based particles in the aqueous environment of Melbourne (Australia) via single particle ICP-MS. Anal Bioanal Chem. 2022 Jul;414(18):5671-81. doi: 10.1007/s00216-022-04052-0.
Roulier M, Baya PA, Roberge S, Larivière D. Comparison of radium-226 separation methods based on chromatographic and extraction resins for its determination by ICP-MS in drinking waters. J Mass Spectrom. 2024 Feb;59(2):e5005. doi: 10.1002/jms.5005.
Shellaiah M, Sun KW. Conjugation of cysteamine functionalized nanodiamond to gold nanoparticles for pH enhanced colorimetric detection of Cr3+ ions demonstrated by real water sample analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2023 Feb;286:121962. doi: 10.1016/j.saa.2022.121962.
Zhu Y, Nakano K, Shikamori Y. Analysis of fluorine in drinking water by ICP-qms/QMS with an octupole reaction cell. Anal Sci. 2017 Nov;33(11):1279-80. doi: 10.2116/analsci.33.1279.
Wysocka IA, Kaczor-Kurzawa D, Porowski A. Development and validation of seaFAST-ICP-QMS method for determination of rare earth elements total concentrations in natural mineral waters. Food Chem. 2022 Sep;388:133008. doi: 10.1016/j.foodchem.2022.133008.
Qian Y, Zheng L, Jiang C, Chen X, Chen Y, Xu Y, Chen Y. Environmental geochemical characteristics of rare-earth elements in surface waters in the Huainan coal mining area, Anhui Province, China. Environ Geochem Health. 2022 Oct;44(10):3527-39. doi: 10.1007/s10653-021-01121-8.
Triantafyllidou S, Wasserstrom L, Nelson J, Webb D, Formal C, Doré E, Lytle D. Lead in synthetic and municipal drinking water varies by field versus laboratory analysis. Sci Total Environ. 2023 Sep;891:163873. doi: 10.1016/j.scitotenv.2023.163873.
Naderi M, R Jahanshahi R, Dehbandi R. Two distinct mechanisms of fluoride enrichment and associated health risk in springs’ water near an inactive volcano, southeast Iran. Ecotoxicol Environ Saf. 2020 Jun;195:110503. doi: 10.1016/j.ecoenv.2020.110503.
Boselli E, Wu Z, Friedman A, Claus Henn B, Papautsky I. Validation of electrochemical sensor for determination of manganese in drinking water. Environ Sci Technol. 2021 May;55(11):7501-09. doi: 10.1021/acs.est.0c05929.
Zeng W, Hu Z, Luo J, Hou X, Jiang X. Highly sensitive determination of trace antimony in water samples by cobalt ion enhanced photochemical vapor generation coupled with atomic fluorescence spectrometry or ICP-MS. Anal Chim Acta. 2022 Jan;1191:339361. doi: 10.1016/j.aca.2021.339361.
Gabrys J. Planetary health in practice: Sensing air pollution and transforming urban environments. Humanit Soc Sci Commun. 2020 Jul;7(1):35. doi: 10.1057/s41599-020-00534-7.
Bettinelli M, Baffi C, Beone GM, Spezia S. Soils and sediments analysis by spectroscopic techniques part II: determination of trace elements by ICP-MS. At Spectrosc. 2000 Mar;21(2):60-70. doi: 10.46770/AS.2000.02.005.
Bruno P, Caselli M, Curri ML, Genga A, Striccoli R, Traini A. Chemical characterisation of ancient pottery from south of Italy by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES): Statistical multivariate analysis of data. Anal Chim Acta. 2000 Apr;410(1-2):193-202. doi: 10.1016/S0003-2670(00)00734-0.
Santos MV, da Silva Júnior JB, de Carvalho CE, dos Santos Vergílio C, Hadlich GM, de Santana CO, de Jesus TB. Geochemical evaluation of potentially toxic elements determined in surface sediment collected in an area under the influence of gold mining. Mar Pollut Bull. 2020 Sep;158:111384. doi: 10.1016/j.marpolbul.2020.111384.
Christidis GE, Knapp CW, Venieri D, Gounaki I, Elgy C, Valsami-Jones E, Photos-Jones E. The interweaving roles of mineral and microbiome in shaping the antibacterial activity of archaeological medicinal clays. J Ethnopharmacol. 2020 Oct;260:112894. doi: 10.1016/j.jep.2020.112894.
Choquenaira-Quispe C, Yucra Condori HR, Villanueva Salas JA, Gonzales-Condori EG. In vitro release of aluminum from the geophagic clay" Chacco" in the Peruvian highlands: Chemical characterization and health risk assessment. J Environ Sci Health B. 2023 Apr;58(4):294-303. doi: 10.1080/03601234.2022.2161795.
Boeschoten LE, Sass-Klaassen U, Vlam M, Comans RN, Koopmans GF, Meyer-Sand BR, Tassiamba SN, Tchamba MT, Zanguim HT, Zemtsa PT, Zuidema PA. Clay and soil organic matter drive wood multi-elemental composition of a tropical tree species: Implications for timber tracing. Sci Total Environ. 2022 Nov;849:157877. doi: 10.1016/j.scitotenv.2022.157877.
Bazamad M, Tangestani MH, S Asadi S, Staubwasser M. Investigating the geochemical behavior and exploration potential of lithium in brines; a case study of Bam salt plug, Zagros Zone, southern Iran. Sci Rep. 2023 Dec;13(1):21567. doi: 10.1038/s41598-023-48909-5.
Ivanić M, Mikac N, Lučić M, Durn G, Sondi I. Size-dependent distribution of metal (loid) s in recent marine sediments of the Adriatic sea. Chemosphere. 2023 Dec;345:140461. doi: 10.1016/j.chemosphere.2023.140461.
Fischer J, Evlanova A, Philippe A, Filser J. Soil properties can evoke toxicity of copper oxide nanoparticles towards springtails at low concentrations. Environ Pollut. 2021 Feb;270:116084. doi: 10.1016/j.envpol.2020.116084.
Abu-Sharar TM, Al-Jundi J, Al-Abdullah T, Ata S, S Khadr S. Radium radioactivity in soil profiles following long term irrigation with high radioactivity fossil groundwater. J Environ Radioact. 2022 Oct;251:106986. doi: 10.1016/j.jenvrad.2022.106986.
Vannoorenberghe M, Van Acker T, Belza J, Teetaert D, Crombé P, Vanhaecke F. Multi-element LA-ICP-MS analysis of the clay fraction of archaeological pottery in provenance studies: a methodological investigation. J Anal At Spectrom. 2020 Sep;35(11):2686-96. doi: 10.1039/D0JA00286K.
Zhu L, Hong C, Zhang J, Qiu Y. Long-distance mobilization of chromium (III) in soil associated with submicron Cr2O3. J Hazard Mater. 2023 Mar;445:130519. doi: 10.1016/j.jhazmat.2022.130519.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The copyright to the submitted manuscript is held by the Author, who grants the Journal of Medical Science (JMS) a nonexclusive licence to use, reproduce, and distribute the work, including for commercial purposes.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.