Efficacy and safety of intravenous iron therapy in heart failure patients with iron deficiency: a systematic review and meta-analysis of randomized controlled trials
DOI:
https://doi.org/10.20883/medical.e1183Keywords:
iron, heart failure, deficiency, review, meta-analysisAbstract
Introduction. Heart failure is a diverse life-threatening condition with complex biology and demanding therapeutic goals. Even when anemic patients are excluded, up to 59% of heart failure patients have low ferritin levels, making them especially vulnerable to iron deficiency. We aim to explore the benefits and safety of intravenous iron therapy among patients with heart failure and iron deficiency.
Material and methods. We have searched the literature on PubMed (MEDLINE), Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science (WoS), and EMBASE until 31st August, 2023. We used RevMan V. 5.4 to pool dichotomous data using a risk ratio (RR) with a 95% confidence interval (CI). This review has been registered and published in PROSPERO (CRD42023471419)
Results. Fourteen randomized controlled trials with 6,626 patients were included. The intravenous iron group was favored over the control group in reducing hospital admissions for heart failure (first event) (RR= 0.83, 95% CI 0.71 to 0.97; p = 0.02) and (total events) (RR= 0.81, 95% CI 0.74 to 0.89; p < 0.0001). Also, the iron group had a 21% lower risk in terms of cardiovascular death and hospital admission for heart failure (number of events, rate per 100 patients in a year) (RR= 0.79, 95% CI 0.74 to 0.85; p < 0.00001). Concerning the adverse events, both ferric carboxymaltose and ferric derisomaltose showed a beneficial effect in reducing the cardiac disorder (RR= 0.81, 95% CI 0.76 to 0.87; p <0.0001), and (RR= 0.82, 95% CI 0.71 to 0.95; p = 0.009), respectively.
Conclusions. Intravenous iron infusion in patients with heart failure has a favorable safety profile. It reduces total hospitalizations for heart failure and cardiovascular mortality, with no effect on all-cause mortality, cardiovascular mortality alone, or first-time hospitalization for heart failure.
Downloads
References
Bozkurt B, Coats AJS, Tsutsui H, et al (2021) Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail 23:352–380. doi: 10.1002/ejhf.2115.
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1789–1858. doi: 10.1016/S0140-6736(18)32279-7.
Savarese G, Becher PM, Lund LH, et al (2023) Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res 118:3272–3287. doi: 10.1093/cvr/cvac013.
Alnuwaysir RIS, Hoes MF, van Veldhuisen DJ, et al (2021) Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J Clin Med 11:125. doi: 10.3390/jcm11010125.
Anand IS, Gupta P (2018) Anemia and Iron Deficiency in Heart Failure. Circulation 138:80–98. doi: 10.1161/CIRCULATIONAHA.118.030099.
Maeder MT, Khammy O, dos Remedios C, Kaye DM (2011) Myocardial and systemic iron depletion in heart failure implications for anemia accompanying heart failure. J Am Coll Cardiol 58:474–480. doi: 10.1016/j.jacc.2011.01.059.
Zhang H, Jamieson KL, Grenier J, et al (2022) Myocardial Iron Deficiency and Mitochondrial Dysfunction in Advanced Heart Failure in Humans. J Am Heart Assoc 11:e022853. doi: 10.1161/JAHA.121.022853.
Klip IT, Comin-Colet J, Voors AA, et al (2013) Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J 165:575-582.e3. doi: 10.1016/j.ahj.2013.01.017.
Ponikowski P, van Veldhuisen DJ, Comin-Colet J, et al (2015) Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency†. Eur Heart J 36:657–668. doi: 10.1093/eurheartj/ehu385.
Ponikowski P, Kirwan B-A, Anker SD, et al (2020) Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet 396:1895–1904. doi: 10.1016/S0140-6736(20)32339-4.
Mentz RJ, Garg J, Rockhold FW, et al (2023) Ferric Carboxymaltose in Heart Failure with Iron Deficiency. New England Journal of Medicine 389:975–986. doi: 10.1056/NEJMoa2304968.
Page MJ, McKenzie JE, Bossuyt PM, et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. doi: 10.1136/bmj.n71.
Higgins JP, Thomas J, Chandler J, et al (2019) Cochrane handbook of systematic reviews of interventions. John Wiley & Sons, Ltd, Chichester (UK).
Sterne JAC, Savović J, Page MJ, et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. doi: 10.1136/bmj.l4898.
Schünemann HJ, Oxman AD, Brozek J, et al (2008) Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 336:1106–1110. doi: 10.1136/bmj.39500.677199.AE.
Guyatt G, Oxman AD, Akl EA, et al (2011) GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. Journal of Clinical Epidemiology 64:383–394. doi: 10.1016/j.jclinepi.2010.04.026.
Joanne E McKenzie, Sue E Brennan, Rebecca E Ryan, et al (2023) Chapter 9: Summarizing study characteristics and preparing for synthesis. In: Cochrane Handbook for Systematic Reviews of Interventions. Cochrane.
10.4.3.1 Recommendations on testing for funnel plot asymmetry. https://handbook-5-1.cochrane.org/chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asymmetry.htm. Accessed 20 Feb 2024.
Marcusohn E, Borreda I, Hellman Y, et al (2022) IV Sodium Ferric Gluconate Complex in Patients With Iron Deficiency Hospitalized due to Acute Heart Failure-Investigator Initiated, Randomized Controlled Trial. J Cardiovasc Pharmacol 80:194–196. doi: 10.1097/FJC.0000000000001287.
Núñez J, Miñana G, Cardells I, et al (2020) Noninvasive Imaging Estimation of Myocardial Iron Repletion Following Administration of Intravenous Iron: The Myocardial-IRON Trial. J Am Heart Assoc 9:e014254. doi: 10.1161/JAHA.119.014254.
Okonko DO, Grzeslo A, Witkowski T, et al (2008) Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial. J Am Coll Cardiol 51:103–112. doi: 10.1016/j.jacc.2007.09.036.
Toblli JE, Lombraña A, Duarte P, Di Gennaro F (2007) Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J Am Coll Cardiol 50:1657–1665. doi: 10.1016/j.jacc.2007.07.029.
van Veldhuisen DJ, Ponikowski P, van der Meer P, et al (2017) Effect of Ferric Carboxymaltose on Exercise Capacity in Patients With Chronic Heart Failure and Iron Deficiency. Circulation 136:1374–1383. doi: 10.1161/CIRCULATIONAHA.117.027497.
Yeo TJ, Yeo PSD, Hadi FA, et al (2018) Single-dose intravenous iron in Southeast Asian heart failure patients: A pilot randomized placebo-controlled study (PRACTICE-ASIA-HF). ESC Heart Fail 5:344–353. doi: 10.1002/ehf2.12250.
Anker SD, Comin Colet J, Filippatos G, et al (2009) Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 361:2436–2448. doi: 10.1056/NEJMoa0908355.
Caravita S, Faini A, Vignati C, et al (2022) Intravenous iron therapy improves the hypercapnic ventilatory response and sleep disordered breathing in chronic heart failure. Eur J Heart Fail 24:1940–1949. doi: 10.1002/ejhf.2628.
Charles-Edwards G, Amaral N, Sleigh A, et al (2019) Effect of Iron Isomaltoside on Skeletal Muscle Energetics in Patients With Chronic Heart Failure and Iron Deficiency. Circulation 139:2386–2398. doi: 10.1161/CIRCULATIONAHA.118.038516.
Kalra PR, Cleland JGF, Petrie MC, et al (2022) Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN): an investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial. Lancet 400:2199–2209. doi: 10.1016/S0140-6736(22)02083-9.
Martens P, Dupont M, Dauw J, et al (2021) The effect of intravenous ferric carboxymaltose on cardiac reverse remodelling following cardiac resynchronization therapy-the IRON-CRT trial. Eur Heart J 42:4905–4914. doi: 10.1093/eurheartj/ehab411.
Reinhold J, Burra V, Corballis N, et al (2023) Effects of Intravenous Iron Replacement Therapy on Cardiovascular Outcomes in Patients with Heart Failure: A Systematic Review and Meta-Analysis. J Cardiovasc Dev Dis 10:116. doi: 10.3390/jcdd10030116.
Osman M, Syed M, Balla S, et al (2021) A Meta-analysis of Intravenous Iron Therapy for Patients With Iron Deficiency and Heart Failure. Am J Cardiol 141:152–153. doi: 10.1016/j.amjcard.2020.11.025.
Zhou X, Xu W, Xu Y, Qian Z (2019) Iron Supplementation Improves Cardiovascular Outcomes in Patients with Heart Failure. Am J Med 132:955–963. doi: 10.1016/j.amjmed.2019.02.018.
Njoroge JN, Teerlink JR (2021) Pathophysiology and Therapeutic Approaches to Acute Decompensated Heart Failure. Circulation Research 128:1468–1486. doi: 10.1161/CIRCRESAHA.121.318186.
Turner LR, Premo DA, Gibbs BJ, et al (2002) Adaptations to iron deficiency: cardiac functional responsiveness to norepinephrine, arterial remodeling, and the effect of beta-blockade on cardiac hypertrophy. BMC Physiol 2:1. doi: 10.1186/1472-6793-2-1.
Martens P (2022) The Effect of Iron Deficiency on Cardiac Function and Structure in Heart Failure with Reduced Ejection Fraction. Card Fail Rev 8:e06. doi: 10.15420/cfr.2021.26.
Azevedo PS, Polegato BF, Minicucci MF, et al (2016) Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq Bras Cardiol 106:62–69. doi: 10.5935/abc.20160005.
Corradi F, Masini G, Bucciarelli T, De Caterina R (2023) Iron deficiency in myocardial ischaemia: molecular mechanisms and therapeutic perspectives. Cardiovasc Res 119:2405–2420. doi: 10.1093/cvr/cvad146.
Chung YJ, Luo A, Park KC, et al (2019) Iron-deficiency anemia reduces cardiac contraction by downregulating RyR2 channels and suppressing SERCA pump activity. JCI Insight 4:e125618, 125618. doi: 10.1172/jci.insight.125618.
Hoes MF, Grote Beverborg N, Kijlstra JD, et al (2018) Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. European Journal of Heart Failure 20:910–919. doi: 10.1002/ejhf.1154.
Cleland JGF, Kalra PA, Pellicori P, et al (2024) Intravenous iron for heart failure, iron deficiency definitions, and clinical response: the IRONMAN trial. European Heart Journal 45:1410–1426. doi: 10.1093/eurheartj/ehae086.
Martens P, Augusto SN, Mullens W, Tang WHW (2024) Meta-Analysis and Metaregression of the Treatment Effect of Intravenous Iron in Iron-Deficient Heart Failure. JACC: Heart Failure 12:525–536. doi: 10.1016/j.jchf.2023.11.006.
Cleland JGF, Pellicori P, Graham FJ, et al (2024) Adjudication of Hospitalizations and Deaths in the IRONMAN Trial of Intravenous Iron for Heart Failure. Journal of the American College of Cardiology 84:1704–1717. doi: 10.1016/j.jacc.2024.08.052.
Von Haehling S, Doehner W, Evertz R, et al (2024) Ferric carboxymaltose and exercise capacity in heart failure with preserved ejection fraction and iron deficiency: the FAIR-HFpEF trial. European Heart Journal 45:3789–3800. doi: 10.1093/eurheartj/ehae479.
Shoaib A, Van Spall HGC, Wu J, et al (2021) Substantial decline in hospital admissions for heart failure accompanied by increased community mortality during COVID-19 pandemic. Eur Heart J Qual Care Clin Outcomes 7:378–387. doi: 10.1093/ehjqcco/qcab040.
Bhatt AS, Moscone A, McElrath EE, et al (2020) Fewer Hospitalizations for Acute Cardiovascular Conditions During the COVID-19 Pandemic. J Am Coll Cardiol 76:280–288. doi: 10.1016/j.jacc.2020.05.038.
Hernández-Vásquez A, Visconti-Lopez FJ, Alburqueque-Cruz R, Rojas-Roque C (2023) Hospitalizations and mortality of patients with heart failure in the COVID-19 era in Peru. Journal of Taibah University Medical Sciences 18:186–189. doi: 10.1016/j.jtumed.2022.07.009.
Lyseng-Williamson KA, Keating GM (2009) Ferric carboxymaltose: a review of its use in iron-deficiency anaemia. Drugs 69:739–756. doi: 10.2165/00003495-200969060-00007.
Mhanna M, Sauer MC, Al-Abdouh A, et al (2024) Intravenous iron therapy for patients with iron deficiency and heart failure: a systematic review and meta-analysis of randomized controlled trials. Baylor University Medical Center Proceedings 37:466–476. doi: 10.1080/08998280.2024.2326387.
Awad AK, Abdelgalil MS, Gonnah AR, et al (2024) Intravenous iron for acute and chronic heart failure with reduced ejection fraction (HFrEF) patients with iron deficiency: An updated systematic review and meta-analysis. Clinical Medicine 24:100211. doi: 10.1016/j.clinme.2024.100211.
Sephien A, Dayto DC, Reljic T, et al (2024) Efficacy of Intravenous Iron in Patients with Heart Failure with Reduced Ejection Fraction and Iron Deficiency: A Systematic Review and Meta-Analysis of Randomized Control Trials. Am J Cardiovasc Drugs 24:285–302. doi: 10.1007/s40256-024-00635-7.
Mesquita ET, Jorge AJL, Rabelo LM, Jr CVS (2017) Understanding Hospitalization in Patients with Heart Failure. Int J Cardiovasc Sci 30:81–90.
Blumer V, Mentz RJ, Sun J-L, et al (2021) Prognostic Role of Prior Heart Failure Hospitalization Among Patients Hospitalized for Worsening Chronic Heart Failure. Circulation: Heart Failure 14:e007871. doi: 10.1161/CIRCHEARTFAILURE.120.007871.
Osenenko KM, Kuti E, Deighton AM, et al (2022) Burden of hospitalization for heart failure in the United States: a systematic literature review. J Manag Care Spec Pharm 28:157–167. doi: 10.18553/jmcp.2022.28.2.157.
Sawicki KT, Ardehali H (2021) Intravenous Iron Therapy in Heart Failure With Reduced Ejection Fraction: Tackling the Deficiency. Circulation 144:253–255. doi: 10.1161/CIRCULATIONAHA.121.054271.
von Haehling S, Ebner N, Evertz R, et al (2019) Iron Deficiency in Heart Failure: An Overview. JACC: Heart Failure 7:36–46. doi: 10.1016/j.jchf.2018.07.015.
Tan N, Cai Y, Liu J, et al (2022) Effects and Safety of Oral Iron for Heart Failure with Iron Deficiency: A Systematic Review and Meta-Analysis with Trial Sequential Analysis. Cardiovascular Therapeutics 2022:e6442122. doi: 10.1155/2022/6442122.
McDonagh TA, Metra M, Adamo M, et al (2023) 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal 44:3627–3639. doi: 10.1093/eurheartj/ehad195.
Abouzid M, Tanashat M, Khlidj Y, et al (2024) Efficacy and safety of intravenous iron therapy in heart failure patients with iron deficiency: a systematic review and meta-analysis of randomized controlled trials. European Heart Journal 45:ehae666.3278. doi: 10.1093/eurheartj/ehae666.3278.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The copyright to the submitted manuscript is held by the Author, who grants the Journal of Medical Science (JMS) a nonexclusive licence to use, reproduce, and distribute the work, including for commercial purposes.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.