Introducing bromine in the molecular structure as a good strategy to the drug design
DOI:
https://doi.org/10.20883/medical.e1128Keywords:
bromine, halogen bond, radiopharmacy, drug resistanceAbstract
Nowadays, the search for new pharmaceuticals results in the development of thousands of new substances. One of the effective drug design strategies is to modify a previously obtained and studied substance. A very popular modification is the introduction of halogens into the structure of drugs, most often these are fluorine or chlorine atoms. However, the introduction of bromine into the structure of a potential drug also has a number of advantages. A good example would be natural substances extracted from marine organisms, which have been studied and proven to be effective in various diseases, including antibiotic therapy of resistant bacteria. Numerous studies justify the usage of bromine and its isotopes in therapy (both in diagnostic imaging and radiotherapy). To better explain the impact of “bromination,” numerous researchers have described such a phenomenon as “halogen bond.” Due to the presence of the so-called “sigma-hole” in the halogen atom of an organic molecule, it is possible to form these bonds, which results in a change in intermolecular and intramolecular interactions. Such changes can favorably affect drug-target interactions. The advantages of “bromination” include an increase in therapeutic activity, a beneficial effect on the metabolism of the drug and an increase in its duration of action. Besides, the phenomenon of heavy atom effect can be used to increase the effectiveness of photodynamic therapy and radiosensitization. Unfortunately, “bromination” is not without drawbacks, which we may include increased toxic effects and accumulation in the organism.
Downloads
References
Smith BR, Eastman CM, Njardarson JT. Beyond C, H, O, and N! Analysis of the Elemental Composition of U.S. FDA Approved Drug Architectures. 2014;
Löwig C. Das Brom und seine chemischen Verhältnisse. Bamberg, Staatsbibliothek: Heidelberg, C.F. Winter; 1829. 202 p.
Antoine B. Mémoire sur une substance particulière contenue dans l’eau de la mer. 1826.
Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis. 2003;3(6):338–48.
Tanaka JCA, da Silva CC, de Oliveira AJB, Nakamura C V., Dias Filho BP. Antibacterial activity of indole alkaloids from Aspidosperma ramiflorum. Brazilian J Med Biol Res. 2006;39(3):387–91.
Williams RB, Hu JF, Olson KM, Norman VL, Goering MG, O’Neil-Johnson M, et al. Antibiotic indole sesquiterpene alkaloid from Greenwayodendron suaveolens with a new natural product framework. J Nat Prod. 2010;73(5):1008–11.
Soriano-Agatón F, Lagoutte D, Poupon E, Roblot F, Fournet A, Gantier JC, et al. Extraction, hemisynthesis, and synthesis of canthin-6-one analogues. Evaluation of their antifungal activities. J Nat Prod. 2005;68(11):1581–7.
Costa E V., Pinheiro MLB, Xavier CM, Silva JRA, Amaral ACF, Souza ADL, et al. A pyrimidine-β-carboline and other alkaloids from Annona foetida with antileishmanial activity. J Nat Prod. 2006;69(2):292–4.
Delorenzi JC, Attias M, Gattass CR, Andrade M, Rezende C, Da Cunha Pinto A, et al. Antileishmanial activity of an indole alkaloid from Peschiera australis. Antimicrob Agents Chemother. 2001;45(5):1349–54.
Philippe G, De Mol P, Zèches-Hanrot M, Nuzillard JM, Tits MH, Angenot L, et al. Indolomonoterpenic alkaloids from Strychnos icaja roots. Phytochemistry. 2003;62(4):623–9.
Verpoorte R, Frédérich M, Delaude C, Angenot L, Dive G, Thépenier P, et al. Moandaensine, a dimeric indole alkaloid from Strychnos moandaensis (Loganiaceae). Phytochem Lett. 2010;3(2):100–3.
Zhou H, He HP, Kong NC, Wang YH, Liu XD, Hao XJ. Three new indole alkaloids from the leaves of Kopsia officinalis. Helv Chim Acta. 2006;89(3):515–9.
Miyazawa M, Fujioka J, Ishikawa Y. Insecticidal compounds from Evodia rutaecarpa against Drosophila melanogaster. J Sci Food Agric. 2002;82(13):1574–8.
Kitajima M, Misawa K, Kogure N, Said IM, Horie S, Hatori Y, et al. A new indole alkaloid, 7-hydroxyspeciociliatine, from the fruits of Malaysian Mitragyna speciosa and its opioid agonistic activity. J Nat Med. 2006;60(1):28–35.
Chen YF, Kuo PC, Chan HH, Kuo IJ, Lin FW, Su CR, et al. β-carboline alkaloids from Stellaria dichotoma var. lanceolata and their anti-inflammatory activity. J Nat Prod. 2010;73(12):1993–8.
Koyama K, Hirasawa Y, Zaima K, Hoe TC, Chan KL, Morita H. Alstilobanines A-E, new indole alkaloids from Alstonia angustiloba. Bioorganic Med Chem. 2008;16(13):6483–8.
Hirasawa Y, Hara M, Nugroho AE, Sugai M, Zaima K, Kawahara N, et al. Bisnicalaterines B and C, atropisomeric bisindole alkaloids from hunteria zeylanica, showing vasorelaxant activity. J Org Chem. 2010;75(12):4218–23.
MacAbeo APG, Vidar WS, Chen X, Decker M, Heilmann J, Wan B, et al. Mycobacterium tuberculosis and cholinesterase inhibitors from Voacanga globosa. Eur J Med Chem [Internet]. 2011;46(7):3118–23. Available from: http://dx.doi.org/10.1016/j.ejmech.2011.04.025
Kitajima M, Iwai M, Kikura-Hanajiri R, Goda Y, Iida M, Yabushita H, et al. Discovery of indole alkaloids with cannabinoid CB1 receptor antagonistic activity. Bioorganic Med Chem Lett [Internet]. 2011;21(7):1962–4. Available from: http://dx.doi.org/10.1016/j.bmcl.2011.02.036
Wang W, Nam S, Lee B, Kang H, Sea S. β-Carboline Alkaloids from a Korean Tunicate Eudistoma sp. 2008;163–6.
Finlayson R, Pearce AN, Page MJ, Kaiser M, Bourguet-Kondracki ML, Harper JL, et al. Didemnidines A and B, indole spermidine alkaloids from the New Zealand ascidian didemnum sp. J Nat Prod. 2011;74(4):888–92.
Alvarado S, Roberts BF, Wright AE, Chakrabarti D. The bis(Indolyl)imidazole alkaloid nortopsentin a exhibits antiplasmodial activity. Antimicrob Agents Chemother. 2013;57(5):2362–4.
Bharate SB, Yadav RR, Khan SI, Tekwani BL, Jacob MR, Khan IA, et al. Meridianin G and its analogs as antimalarial agents. Medchemcomm. 2013;4(6):1042–8.
Till M, Prinsep MR. 5-Bromo-8-methoxy-1-methyl-β-carboline, an Alkaloid from the New Zealand Marine Bryozoan Pterocella Wesiculosa. J Nat Prod. 2009;72(4):796–8.
Carletti I, Banaigs B, Amade P. Matemone, a new bioactive bromine-containing oxindole alkaloid from the indian ocean sponge Iotrochota purpurea. J Nat Prod. 2000;63(7):981–3.
Tsuda M, Takahashi Y, Fromont J, Mikami Y, Kobayashi J. Dendridine A, a Bis-indole alkaloid from a marine sponge Dictyodendrilla species. J Nat Prod. 2005;68(8):1277–8.
Zoraghi R, Worrall L, See RH, Strangman W, Popplewell WL, Gong H, et al. Methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as a target for bis-indole alkaloids with antibacterial activities. J Biol Chem. 2011;286(52):44716–25.
Inspired M, Marine U, Space C. Marine Inspired as Modulators of Serotonin Receptors : An Example Illustrating the Power of Bromine as Part of the. 2017;1–14.
Breunig K, Scholten B, Spahn I, Hermanne A, Spellerberg S, Coenen HH, et al. Production of medically useful bromine isotopes via alpha-particle induced nuclear reactions. EPJ Web Conf. 2017;146:2016–8.
Bartels JL, Huang C, Li A, Yuan L, Rich K, McConathy J, et al. Synthesis and Biological Evaluation of (S)-Amino-2-methyl-4-[76Br]bromo-3-(E)-butenoic Acid (BrVAIB) for Brain Tumor Imaging. J Med Chem. 2015;58(21):8542–52.
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol [Internet]. 2021;92(xxxx):241–69. Available from: https://doi.org/10.1016/j.nucmedbio.2020.07.003
McGuinness SR, Wilkinson JT, Peaslee GF. Heavy-ion production of 77Br and 76Br. Sci Rep [Internet]. 2021;11(1):1–9. Available from: https://doi.org/10.1038/s41598-021-94922-x
Degueldre C, Findlay J, Cheneler D, Sardar S, Green S. Short life fission products extracted from molten salt reactor fuel for radiopharmaceutical applications. Appl Radiat Isot [Internet]. 2024;205(July 2023):111146. Available from: https://doi.org/10.1016/j.apradiso.2023.111146
Zhou D, Sung Hoon Kim, Chu W, Voller T, Katzenellenbogen JA. Evaluation of aromatic radiobromination by nucleophilic substitution using diaryliodonium salt precursors. Physiol Behav. 2017;176(5):139–48.
Kondo Y, Kimura H, Sasaki I, Watanabe S, Ohshima Y, Yagi Y, et al. Copper-mediated radioiodination and radiobromination via aryl boronic precursor and its application to 125I/77Br–labeled prostate-specific membrane antigen imaging probes. Bioorganic Med Chem [Internet]. 2022;69(July):116915. Available from: https://doi.org/10.1016/j.bmc.2022.116915
Lang L, Li W, Jia H-M, Fang D-C, Zhang S, Sun X, et al. New Methods for Labeling RGD Peptides with Bromine-76. Theranostics. 2012;1:341–53.
Hashimoto T, Kondo N, Makino A, Kiyono Y, Temma T. Radiobrominated probe targeting activated p38α in inflammatory diseases. Ann Nucl Med [Internet]. 2022;36(10):845–52. Available from: https://doi.org/10.1007/s12149-022-01764-2
Ogawa K, Takeda T, Yokokawa M, Yu J, Makino A, Kiyono Y, et al. Comparison of radioiodine- or radiobromine-labeled rgd peptides between direct and indirect labeling methods. Chem Pharm Bull. 2018;66(6):651–9.
Sreekumar S, Zhou D, Mpoy C, Schenk E, Scott J, Arbeit JM, et al. Preclinical Efficacy of a PARP-1 Targeted Auger-Emitting Radionuclide in Prostate Cancer. Int J Mol Sci. 2023;24(4).
Hoffman SLV, Mixdorf JC, Kwon O, Johnson TR, Makvandi M, Lee H, et al. Preclinical studies of a PARP targeted, Meitner-Auger emitting, theranostic radiopharmaceutical for metastatic ovarian cancer. Nucl Med Biol [Internet]. 2023;122–123(July):108368. Available from: https://doi.org/10.1016/j.nucmedbio.2023.108368
Högnäsbacka A, Poot AJ, Vugts DJ, van Dongen GAMS, Windhorst AD. The Development of Positron Emission Tomography Tracers for In Vivo Targeting the Kinase Domain of the Epidermal Growth Factor Receptor. Pharmaceuticals. 2022;15(4).
Fawwaz M, Mishiro K, Nishii R, Makino A, Kiyono Y, Shiba K, et al. A radiobrominated tyrosine kinase inhibitor for egfr with l858r/t790m mutations in lung carcinoma. Pharmaceuticals. 2021;14(3):1–14.
Mishiro K, Nishii R, Sawazaki I, Sofuku T, Fuchigami T, Sudo H, et al. Development of Radiohalogenated Osimertinib Derivatives as Imaging Probes for Companion Diagnostics of Osimertinib. J Med Chem [Internet]. 2022 Feb 10;65(3):1835–47. Available from: https://doi.org/10.1021/acs.jmedchem.1c01211
Search H, Journals C, Contact A, Iopscience M, Address IP, Raghavan AM, et al. A model for optimizing delivery of targeted radionuclide therapies into resection cavity margins for the treatment of primary brain cancers. Biomed Phys Eng Express. 2017;
Watanabe S, Hanaoka H, Liang JX, Iida Y, Endo K, Ishioka NS. PET imaging of norepinephrine transporter - Expressing tumors using 76Br-meta-bromobenzylguanidine. J Nucl Med. 2010;51(9):1472–9.
Lang L, Ma Y, Kim BM, Jagoda EM, Rice KC, Szajek LP, et al. [76Br]BMK-I-152, a non-peptide analogue for PET imaging of corticotropin-releasing hormone type 1 receptor (CRHR1). J Label Compd Radiopharm. 2009;52(9):394–400.
Jagoda EM, Lang L, Mccullough K, Contoreggi C, Kim BM, Ma Y, et al. [76Br]BMK-152, a nonpeptide analogue, with high affinity and low nonspecific binding for the corticotropin-releasing factor type 1 receptor. Synapse. 2011;65(9):910–8.
Parent EE, Jenks C, Sharp T, Welch MJ, Katzenellenbogen JA. Synthesis and biological evaluation of a nonsteroidal bromine-76-labeled androgen receptor ligand 3-[76Br]bromo-hydroxyflutamide. Nucl Med Biol. 2006;33(6):705–13.
Kiesewetter DO, Lang L, Ma Y, Bhattacharjee AK, Gao ZG, Joshi B V., et al. Synthesis and characterization of [76Br]-labeled high-affinity A3 adenosine receptor ligands for positron emission tomography. Nucl Med Biol [Internet]. 2009;36(1):3–10. Available from: http://dx.doi.org/10.1016/j.nucmedbio.2008.10.003
Lee JH, Peters O, Lehmann L, Dence CS, Sharp TL, Carlson KE, et al. Synthesis and biological evaluation of two agents for imaging estrogen receptor β by positron emission tomography: challenges in PET imaging of a low abundance target. Nucl Med Biol [Internet]. 2012;39(8):1105–16. Available from: http://dx.doi.org/10.1016/j.nucmedbio.2012.05.011
Park Y, Polska K, Rak J, Wagner JR, Sanche L. Fundamental mechanisms of DNA radiosensitization: Damage induced by low-energy electrons in brominated oligonucleotide trimers. J Phys Chem B. 2012;116(32):9676–82.
Ghorab MM, Ragab FA, Heiba HI, Nissan YM, Ghorab WM. Novel brominated quinoline and pyrimidoquinoline derivatives as potential cytotoxic agents with synergistic effects of γ-radiation. Arch Pharm Res. 2012;35(8):1335–46.
Picard N, Ali H, Van Lier JE, Klarskov K, Paquette B. Bromines on N-allyl position of cationic porphyrins affect both radio- and photosensitizing properties. Photochem Photobiol Sci. 2009;8(2):224–32.
Brammer L, Peuronen A, Roseveare TM. Halogen bonds, chalcogen bonds, pnictogen bonds, tetrel bonds and other r-hole interactions: a snapshot of current progress. Acta Crystallogr Sect C Struct Chem. 2023;79(6):204–16.
Kellett CW, Kennepohl P, Berlinguette CP. Π Covalency in the Halogen Bond. Nat Commun. 2020;11(1):1–8.
Mitoraj MP, Michalak A. Theoretical description of halogen bonding - An insight based on the natural orbitals for chemical valence combined with the extended-transition- state method (ETS-NOCV). J Mol Model. 2013;19(11):4681–8.
Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, et al. The halogen bond. Chem Rev. 2016;116(4):2478–601.
Emsley J. Very strong hydrogen bonding. Chem Soc Rev. 1980;9(1):91–124.
Larson JW, McMahon TB. Gas-phase bihalide and pseudobihalide ions. An ion cyclotron resonance determination of hydrogen bond energies in XHY- species (X, Y = F, Cl, Br, CN). Inorg Chem. 1984 Jul;23(14):2029–33.
Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. Definition of the Halogen Bond (IUPAC Recommendations 2013): A Revisit. Cryst Growth Des. 2024;24(13):5494–525.
Zhang Q, Xu Z, Zhu W. The Underestimated Halogen Bonds Forming with Protein Side Chains in Drug Discovery and Design. J Chem Inf Model. 2017;57(1):22–6.
Alaminsky RJ, Seminario JM. Sigma-holes from iso-molecular electrostatic potential surfaces. J Mol Model. 2019;25(6).
Parks DJ, LaFrance L V., Calvo RR, Milkiewicz KL, Gupta V, Lattanze J, et al. 1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction: Discovery and SAR. Bioorganic Med Chem Lett. 2005;15(3):765–70.
Riley KE, Murray JS, Fanfrlík J, Řezáč J, Solá RJ, Concha MC, et al. Halogen bond tunability I: The effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine. J Mol Model. 2011;17(12):3309–18.
Aakeröy CB, Baldrighi M, Desper J, Metrangolo P, Resnati G. Supramolecular hierarchy among halogen-bond donors. Chem - A Eur J. 2013;19(48):16240–7.
Aakeröy CB, Wijethunga TK, Desper J, Daković M. Electrostatic potential differences and halogen-bond selectivity. Cryst Growth Des. 2016;16(5):2662–70.
Forni A, Rendine S, Pieraccini S, Sironi M. Solvent effect on halogen bonding: The case of the I⋯O interaction. J Mol Graph Model [Internet]. 2012;38:31–9. Available from: http://dx.doi.org/10.1016/j.jmgm.2012.08.002
Costa PJ. The halogen bond: Nature and applications. Phys Sci Rev. 2019;2(11):1–16.
Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem. 2013;56(4):1363–88.
Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, et al. Systematic investigation of halogen bonding in protein-ligand interactions. Angew Chemie - Int Ed. 2011;50(1):314–8.
Rohde LAH, Ahring PK, Jensen ML, Nielsen EØ, Peters D, Helgstrand C, et al. Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine α4β2 receptors: Unique role of halogen bonding revealed. J Biol Chem. 2012;287(6):4248–59.
Himmel DM, Das K, Clark AD, Hughes SH, Benjahad A, Oumouch S, et al. Crystal structures for HIV-1 reverse transcriptase in complexes with three pyridinone derivatives: A new class of non-nucleoside inhibitors effective against a broad range of drug-resistant strains. J Med Chem. 2005;48(24):7582–91.
Heroven C, Georgi V, Ganotra GK, Brennan P, Wolfreys F, Wade RC, et al. Halogen–Aromatic π Interactions Modulate Inhibitor Residence Times. Angew Chemie - Int Ed. 2018;57(24):7220–4.
Nunes RS, Vila-Viçosa D, Costa PJ. Halogen Bonding: An Underestimated Player in Membrane-Ligand Interactions. J Am Chem Soc. 2021;143(11):4253–67.
Lu Y, Wang Y, Zhu W. Nonbonding interactions of organic halogens in biological systems: Implications for drug discovery and biomolecular design. Phys Chem Chem Phys. 2010;12(18):4543–51.
Zaldini Hernandes M, Melo Cavalcanti ST, Rodrigo Moreira DM, Filgueira de Azevedo Junior W, Cristina Lima Leite A. Halogen Atoms in the Modern Medicinal Chemistry: Hints for the Drug Design. Curr Drug Targets. 2010;11:303–14.
Park HG, Choi JY, Kim MH, Choi SH, Park MK, Lee J, et al. Biarylcarboxybenzamide derivatives as potent vanilloid receptor (VR1) antagonistic ligands. Bioorganic Med Chem Lett. 2005;15(3):631–4.
Jiang S, Zhang L, Cui D, Yao Z, Gao B, Lin J, et al. The Important Role of Halogen Bond in Substrate Selectivity of Enzymatic Catalysis. Sci Rep. 2016;6(February):1–7.
Mondal S, Giri D, Mugesh G. Halogen Bonding in the Molecular Recognition of Thyroid Hormones and Their Metabolites by Transport Proteins and Thyroid Hormone Receptors. J Indian Inst Sci [Internet]. 2020;100(1):231–47. Available from: https://doi.org/10.1007/s41745-019-00153-5
Marsan ES, Bayse CA. A halogen bonding perspective on iodothyronine deiodinase activity. Molecules. 2020;25(6):1–16.
Mondal S, Manna D, Raja K, Mugesh G. Halogen Bonding in Biomimetic Deiodination of Thyroid Hormones and their Metabolites and Dehalogenation of Halogenated Nucleosides. ChemBioChem. 2020;21(7):911–23.
Inouye B, Katayama Y, Ishida T, Ogata M, Utsumi K. Effects of aromatic bromine compounds on the function of biological membranes. Toxicol Appl Pharmacol. 1979;48(3):467–77.
Nishimura C, Horii Y, Tanaka S, Asante KA, Ballesteros F, Viet PH, et al. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils. Environ Pollut [Internet]. 2017;225(2017):252–60. Available from: http://dx.doi.org/10.1016/j.envpol.2016.10.088.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The copyright to the submitted manuscript is held by the Author, who grants the Journal of Medical Science (JMS) a nonexclusive licence to use, reproduce, and distribute the work, including for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.