Juvenile Amyotrophic Lateral Sclerosis: a mini review of literature
DOI:
https://doi.org/10.20883/medical.e1098Keywords:
FUS, SETX, SIGMAR1, SPG11, ALS2, juvenile amyotrophic lateral sclerosisAbstract
Juvenile Amyotrophic Lateral Sclerosis (JALS) is a rare type of motor neuron disease that typically manifests before the age of 25. Research findings indicate that the most prevalent gene mutations linked to JALS are FUS, SETX, SIGMAR1, SPG11 and ALS2. In instances of familial occurrence, the gene mutations are predominantly inherited in an autosomal recessive manner, whereas mutations in SETX follow an autosomal dominant inheritance pattern. The clinical manifestations of JALS encompass a combination of upper and lower motor neuron degeneration, and the disease's prognosis can range from rapidly progressive to a more gradual course. Specific gene mutations may give rise to distinct clinical features in addition to the fundamental motor neuron symptoms. Accurate diagnosis of JALS necessitates thorough clinical evaluation and genetic testing, as understanding the hereditary patterns and accompanying characteristics can offer valuable prognostic insights. Timely identification and proper management of JALS are imperative due to its rarity and significant impact on affected individuals.
Downloads
References
Picher-Martel V, Brunet F, Dupré N, Chrestian N. The Occurrence of FUS Mutations in Pediatric Amyotrophic Lateral Sclerosis: A Case Report and Review of the Literature. J Child Neurol. 2020 Jul;35(8):556-562. doi: 10.1177/0883073820915099. Epub 2020 Apr 13. PMID: 32281455.
Lehky T, Grunseich C. Juvenile Amyotrophic Lateral Sclerosis: A Review. Genes (Basel). 2021 Nov 30;12(12):1935. doi: 10.3390/genes12121935. PMID: 34946884; PMCID: PMC8701111.
Gordon PH, Cheng B, Katz IB, Mitsumoto H, Rowland LP. Clinical features that distinguish PLS, upper motor neuron-dominant ALS, and typical ALS. Neurology. 2009 Jun 2;72(22):1948-52. doi: 10.1212/WNL.0b013e3181a8269b. PMID: 19487653.
Kacem I, Sghaier I, Bougatef S, Nasri A, Gargouri A, Ajroud-Driss S, Gouider R. Epidemiological and clinical features of amyotrophic lateral sclerosis in a Tunisian cohort. Amyotroph Lateral Scler Frontotemporal Degener. 2020 Feb;21(1-2):131-139. doi: 10.1080/21678421.2019.1704012. Epub 2019 Dec 20. PMID: 31858811.
Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front Neurosci. 2019 Dec 6;13:1310. doi: 10.3389/fnins.2019.01310. PMID: 31866818; PMCID: PMC6909825.
Mathis S, Goizet C, Soulages A, Vallat JM, Masson GL. Genetics of amyotrophic lateral sclerosis: A review. J Neurol Sci. 2019 Apr 15;399:217-226. doi: 10.1016/j.jns.2019.02.030. Epub 2019 Feb 21. PMID: 30870681.
Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, Miyamoto N, Showguchi-Miyata J, Okada Y, Singaraja R, Figlewicz DA, Kwiatkowski T, Hosler BA, Sagie T, Skaug J, Nasir J, Brown RH Jr, Scherer SW, Rouleau GA, Hayden MR, Ikeda JE. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet. 2001 Oct;29(2):166-73. doi: 10.1038/ng1001-166. PMID: 11586298.
Souza PVS, Serrano PL, Farias IB, Machado RIL, Badia BML, Oliveira HB, Barbosa AS, Pereira CA, Moreira VF, Chieia MAT, Barbosa AR, Braga VL, Pinto WBVR, Oliveira ASB. Clinical and Genetic Aspects of Juvenile Amyotrophic Lateral Sclerosis: A Promising Era Emerges. Genes (Basel). 2024 Feb 28;15(3):311. doi: 10.3390/genes15030311. PMID: 38540369; PMCID: PMC10969870.
Chen L. FUS mutation is probably the most common pathogenic gene for JALS, especially sporadic JALS. Revue Neurologique. 2021 Apr;177(4):333–40.
Sato K, Otomo A, Ueda MT, Hiratsuka Y, Suzuki-Utsunomiya K, Sugiyama J, Murakoshi S, Mitsui S, Ono S, Nakagawa S, Shang HF, Hadano S. Altered oligomeric states in pathogenic ALS2 variants associated with juvenile motor neuron diseases cause loss of ALS2-mediated endosomal function. J Biol Chem. 2018 Nov 2;293(44):17135-17153. doi: 10.1074/jbc.RA118.003849. Epub 2018 Sep 17. PMID: 30224357; PMCID: PMC6222102.
Hentati A, Bejaoui K, Pericak-Vance MA, Hentati F, Speer MC, Hung WY, Figlewicz DA, Haines J, Rimmler J, Ben Hamida C, et al. Linkage of recessive familial amyotrophic lateral sclerosis to chromosome 2q33-q35. Nat Genet. 1994 Jul;7(3):425-8. doi: 10.1038/ng0794-425. PMID: 7920663.
Ben Hamida M, Hentati F, Ben Hamida C. Hereditary motor system diseases (chronic juvenile amyotrophic lateral sclerosis). Conditions combining a bilateral pyramidal syndrome with limb and bulbar amyotrophy. Brain. 1990 Apr;113 ( Pt 2):347-63. doi: 10.1093/brain/113.2.347. PMID: 2328408.
Kress JA, Kühnlein P, Winter P, Ludolph AC, Kassubek J, Müller U, Sperfeld AD. Novel mutation in the ALS2 gene in juvenile amyotrophic lateral sclerosis. Ann Neurol. 2005 Nov;58(5):800-3. doi: 10.1002/ana.20665. PMID: 16240357.
Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, Miyamoto N, Showguchi-Miyata J, Okada Y, Singaraja R, Figlewicz DA, Kwiatkowski T, Hosler BA, Sagie T, Skaug J, Nasir J, Brown RH Jr, Scherer SW, Rouleau GA, Hayden MR, Ikeda JE. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet. 2001 Oct;29(2):166-73. doi: 10.1038/ng1001-166. PMID: 11586298.
Fang F, Quinlan P, Ye W, Barber MK, Umbach DM, Sandler DP, Kamel F. Workplace exposures and the risk of amyotrophic lateral sclerosis. Environ Health Perspect. 2009 Sep;117(9):1387-92. doi: 10.1289/ehp.0900580. Epub 2009 May 11. PMID: 19750102; PMCID: PMC2737014.
Sprute R, Jergas H, Ölmez A, Alawbathani S, Karasoy H, Dafsari HS, Becker K, Daimagüler HS, Nürnberg P, Muntoni F, Topaloglu H, Uyanik G, Cirak S. Genotype-phenotype correlation in seven motor neuron disease families with novel ALS2 mutations. Am J Med Genet A. 2021 Feb;185(2):344-354. doi: 10.1002/ajmg.a.61951. Epub 2020 Nov 5. PMID: 33155358.
Miceli M, Exertier C, Cavaglià M, Gugole E, Boccardo M, Casaluci RR, Ceccarelli N, De Maio A, Vallone B, Deriu MA. ALS2-Related Motor Neuron Diseases: From Symptoms to Molecules. Biology (Basel). 2022 Jan 5;11(1):77. doi: 10.3390/biology11010077. PMID: 35053075; PMCID: PMC8773251.
Sheerin UM, Schneider SA, Carr L, Deuschl G, Hopfner F, Stamelou M, Wood NW, Bhatia KP. ALS2 mutations: juvenile amyotrophic lateral sclerosis and generalized dystonia. Neurology. 2014 Mar 25;82(12):1065-7. doi: 10.1212/WNL.0000000000000254. Epub 2014 Feb 21. PMID: 24562058; PMCID: PMC3962990
Siddiqi S, Foo JN, Vu A, Azim S, Silver DL, Mansoor A, Tay SK, Abbasi S, Hashmi AH, Janjua J, Khalid S, Tai ES, Yeo GW, Khor CC. A novel splice-site mutation in ALS2 establishes the diagnosis of juvenile amyotrophic lateral sclerosis in a family with early onset anarthria and generalized dystonias. PLoS One. 2014 Dec 4;9(12):e113258. doi: 10.1371/journal.pone.0113258. PMID: 25474699; PMCID: PMC4256290.
Eymard-Pierre E, Lesca G, Dollet S, Santorelli FM, di Capua M, Bertini E, Boespflug-Tanguy O. Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Am J Hum Genet. 2002 Sep;71(3):518-27. doi: 10.1086/342359. Epub 2002 Jul 26. PMID: 12145748; PMCID: PMC379189.
Sheerin UM, Schneider SA, Carr L, Deuschl G, Hopfner F, Stamelou M, Wood NW, Bhatia KP. ALS2 mutations: juvenile amyotrophic lateral sclerosis and generalized dystonia. Neurology. 2014 Mar 25;82(12):1065-7. doi: 10.1212/WNL.0000000000000254. Epub 2014 Feb 21. PMID: 24562058; PMCID: PMC3962990.
Ma L, Shi Y, Chen Z, Li S, Zhang J. A novel SETX gene mutation associated with Juvenile amyotrophic lateral sclerosis. Brain Behav. 2018 Sep;8(9):e01066. doi: 10.1002/brb3.1066. Epub 2018 Jul 27. PMID: 30052327; PMCID: PMC6160657.
Grunseich C, Patankar A, Amaya J, Watts JA, Li D, Ramirez P, Schindler AB, Fischbeck KH, Cheung VG. Clinical and Molecular Aspects of Senataxin Mutations in Amyotrophic Lateral Sclerosis 4. Ann Neurol. 2020 Apr;87(4):547-555. doi: 10.1002/ana.25681. Epub 2020 Jan 28. PMID: 31957062; PMCID: PMC7818251.
Chance PF, Rabin BA, Ryan SG, Ding Y, Scavina M, Crain B, Griffin JW, Cornblath DR. Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. Am J Hum Genet. 1998 Mar;62(3):633-40. doi: 10.1086/301769. PMID: 9497266; PMCID: PMC1376963.
Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). American journal of human genetics. 2004 Jun;74(6):1128-1135. doi: 10.1086/421054.
Chen S, Du J, Jiang H, Zhao W, Wang N, Ying A, Li J, Chen S, Shen B, Zhou Y. Ataxia with oculomotor apraxia type 2 caused by a novel homozygous mutation in SETX gene, and literature review. Front Mol Neurosci. 2022 Nov 10;15:1019974. doi: 10.3389/fnmol.2022.1019974. PMID: 36438189; PMCID: PMC9684320.
Algahtani H, Shirah B, Algahtani R, Naseer MI, Al-Qahtani MH, Abdulkareem AA. Ataxia with ocular apraxia type 2 not responding to 4-aminopyridine: A rare mutation in the SETX gene in a Saudi patient. Intractable Rare Dis Res. 2018 Nov;7(4):275-279. doi: 10.5582/irdr.2018.01107. PMID: 30560021; PMCID: PMC6290838.
Nanetti L, Cavalieri S, Pensato V, Erbetta A, Pareyson D, Panzeri M, Zorzi G, Antozzi C, Moroni I, Gellera C, Brusco A, Mariotti C. SETX mutations are a frequent genetic cause of juvenile and adult onset cerebellar ataxia with neuropathy and elevated serum alpha-fetoprotein. Orphanet J Rare Dis. 2013 Aug 14;8:123. doi: 10.1186/1750-1172-8-123. PMID: 23941260; PMCID: PMC3751478.
Richard P, Feng S, Tsai YL, Li W, Rinchetti P, Muhith U, Irizarry-Cole J, Stolz K, Sanz LA, Hartono S, Hoque M, Tadesse S, Seitz H, Lotti F, Hirano M, Chédin F, Tian B, Manley JL. SETX (senataxin), the helicase mutated in AOA2 and ALS4, functions in autophagy regulation. Autophagy. 2021 Aug;17(8):1889-1906. doi: 10.1080/15548627.2020.1796292. Epub 2020 Aug 7. PMID: 32686621; PMCID: PMC8386630.
Daoud H, Zhou S, Noreau A, Sabbagh M, Belzil V, Dionne-Laporte A, Tranchant C, Dion P, Rouleau GA. Exome sequencing reveals SPG11 mutations causing juvenile ALS. Neurobiol Aging. 2012 Apr;33(4):839.e5-9. doi: 10.1016/j.neurobiolaging.2011.11.012. Epub 2011 Dec 10. PMID: 22154821.
Orlacchio A, Babalini C, Borreca A, Patrono C, Massa R, Basaran S, Munhoz RP, Rogaeva EA, St George-Hyslop PH, Bernardi G, Kawarai T. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain. 2010 Feb;133(Pt 2):591-8. doi: 10.1093/brain/awp325. Epub 2010 Jan 28. PMID: 20110243; PMCID: PMC2822627.
Chen X, Liu J, Wei QQ, Ou RW, Cao B, Yuan X, Hou Y, Zhang L, Shang H. Chinese families with autosomal recessive hereditary spastic paraplegia caused by mutations in SPG11. BMC Neurol. 2020 Jan 3;20(1):2. doi: 10.1186/s12883-019-1593-y. PMID: 31900114; PMCID: PMC6941247.
Pozner T, Regensburger M, Engelhorn T, Winkler J, Winner B. Janus-faced spatacsin (SPG11): involvement in neurodevelopment and multisystem neurodegeneration. Brain. 2020 Aug 1;143(8):2369-2379. doi: 10.1093/brain/awaa099. PMID: 32355960; PMCID: PMC7447516.
Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009 Feb 27;323(5918):1208-1211. doi: 10.1126/science.1165942. PMID: 19251628; PMCID: PMC4516382.
Polymenidou M, Lagier-Tourenne C, Hutt KR, Bennett CF, Cleveland DW, Yeo GW. Misregulated RNA processing in amyotrophic lateral sclerosis. Brain Res. 2012 Jun 26;1462:3-15. doi: 10.1016/j.brainres.2012.02.059. Epub 2012 Mar 3. PMID: 22444279; PMCID: PMC3707312.
Hübers A, Just W, Rosenbohm A, Müller K, Marroquin N, Goebel I, Högel J, Thiele H, Altmüller J, Nürnberg P, Weishaupt JH, Kubisch C, Ludolph AC, Volk AE. De novo FUS mutations are the most frequent genetic cause in early-onset German ALS patients. Neurobiol Aging. 2015 Nov;36(11):3117.e1-3117.e6. doi: 10.1016/j.neurobiolaging.2015.08.005. Epub 2015 Aug 15. PMID: 26362943.
Zou ZY, Che CH, Feng SY, Fang XY, Huang HP, Liu CY. Novel FUS mutation Y526F causing rapidly progressive familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2021 Feb;22(1-2):73-79. doi: 10.1080/21678421.2020.1797815. Epub 2020 Jul 28. PMID: 32720527.
Naumann M, Peikert K, Günther R, van der Kooi AJ, Aronica E, Hübers A, Danel V, Corcia P, Pan-Montojo F, Cirak S, Haliloglu G, Ludolph AC, Goswami A, Andersen PM, Prudlo J, Wegner F, Van Damme P, Weishaupt JH, Hermann A. Phenotypes and malignancy risk of different FUS mutations in genetic amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2019 Dec;6(12):2384-2394. doi: 10.1002/acn3.50930. Epub 2019 Nov 4. PMID: 31682085; PMCID: PMC6917314.
Hirayanagi K, Sato M, Furuta N, Makioka K, Ikeda Y. Juvenile-onset Sporadic Amyotrophic Lateral Sclerosis with a Frameshift FUS Gene Mutation Presenting Unique Neuroradiological Findings and Cognitive Impairment. Intern Med. 2016;55(6):689-93. doi: 10.2169/internalmedicine.55.5569. Epub 2016 Mar 15. PMID: 26984092.
Chen L, Li J, Lu H, Liu Y. A de novo c.1509dupA:p.R503fs mutation of FUS: report of a girl with sporadic juvenile amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2020 Nov;21(7-8):635-637. doi: 10.1080/21678421.2020.1775256. Epub 2020 Jun 5. PMID: 32501131.
Mavlyutov TA, Epstein ML, Andersen KA, Ziskind-Conhaim L, Ruoho AE. The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study. Neuroscience. 2010 May 5;167(2):247-55. doi: 10.1016/j.neuroscience.2010.02.022. Epub 2010 Feb 16. PMID: 20167253; PMCID: PMC2862368.
Al-Saif A, Al-Mohanna F, Bohlega S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol. 2011 Dec;70(6):913-9. doi: 10.1002/ana.22534. Epub 2011 Aug 12. PMID: 21842496.
Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, Jin S, Mancias P, Kiyama H, Yamanaka K. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med. 2016 Dec 1;8(12):1421-1437. doi: 10.15252/emmm.201606403. PMID: 27821430; PMCID: PMC5167132.
Ullah MI, Ahmad A, Raza SI, Amar A, Ali A, Bhatti A, John P, Mohyuddin A, Ahmad W, Hassan MJ. In silico analysis of SIGMAR1 variant (rs4879809) segregating in a consanguineous Pakistani family showing amyotrophic lateral sclerosis without frontotemporal lobar dementia. Neurogenetics. 2015 Oct;16(4):299-306. doi: 10.1007/s10048-015-0453-1. Epub 2015 Jul 24. PMID: 26205306.
Li X, Hu Z, Liu L, Xie Y, Zhan Y, Zi X, Wang J, Wu L, Xia K, Tang B, Zhang R. A SIGMAR1 splice-site mutation causes distal hereditary motor neuropathy. Neurology. 2015 Jun 16;84(24):2430-7. doi: 10.1212/WNL.0000000000001680. Epub 2015 May 15. PMID: 26078401
Karasozen Y, Sheikh KA, Mancias P, Nguyen TP. Uniparental Disomy Leading to a Rare Juvenile Form of ALS. J Pediatr Perinatol Child Health. 2020;4(4):107-110. doi: 10.26502/jppch.74050049. Epub 2020 Oct 10. PMID: 33123684; PMCID: PMC7592712.
Johnson JO, Chia R, Miller DE, Li R, Kumaran R, Abramzon Y et al. Association of variants in the SPTLC1 gene with juvenile amyotrophic lateral sclerosis. JAMA Neurology. 2021 Oct;78(10):1236-1248. Epub 2021 Aug 30. doi: 10.1001/jamaneurol.2021.2598
Tunca C, Akçimen F, Coşkun C, Gündoğdu-Eken A, Kocoglu C, Çevik B, Bekircan-Kurt CE, Tan E, Başak AN. ERLIN1 mutations cause teenage-onset slowly progressive ALS in a large Turkish pedigree. Eur J Hum Genet. 2018 May;26(5):745-748. doi: 10.1038/s41431-018-0107-5. Epub 2018 Feb 16. PMID: 29453415; PMCID: PMC5945623.
Köroğlu Ç, Yılmaz R, Sorgun MH, Solakoğlu S, Şener Ö. GNE missense mutation in recessive familial amyotrophic lateral sclerosis. Neurogenetics. 2017 Dec;18(4):237-243. doi: 10.1007/s10048-017-0527-3. Epub 2017 Oct 31. PMID: 29086072.
Silva DP, Soeiro E Sá M, Silveira F, Pinto S, Gromicho M, Sousa AB, Leão M, De Carvalho M. VRK1 variants in two Portuguese unrelated patients with childhood-onset motor neuron disease. Amyotroph Lateral Scler Frontotemporal Degener. 2020 May;21(3-4):291-295. doi: 10.1080/21678421.2020.1746343. Epub 2020 Apr 3. PMID: 32242460.
Huang X, Fan D. A novel mutation of BICD2 gene associated with juvenile amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2017 Aug;18(5-6):454-456. doi: 10.1080/21678421.2017.1304557. Epub 2017 Mar 23. PMID: 28335620.
Naruse H, Ishiura H, Mitsui J, Takahashi Y, Matsukawa T, Toda T, Tsuji S. Juvenile amyotrophic lateral sclerosis with complex phenotypes associated with novel SYNE1 mutations. Amyotroph Lateral Scler Frontotemporal Degener. 2021 Nov;22(7-8):576-578. doi: 10.1080/21678421.2020.1813312. Epub 2020 Sep 1. PMID: 32870032.
Wu C, Fan D. A Novel Missense Mutation of the DDHD1 Gene Associated with Juvenile Amyotrophic Lateral Sclerosis. Front Aging Neurosci. 2016 Dec 6;8:291. doi: 10.3389/fnagi.2016.00291. PMID: 27999540; PMCID: PMC5138217.
Liu ZJ, Lin HX, Liu GL, Tao QQ, Ni W, Xiao BG, Wu ZY. The investigation of genetic and clinical features in Chinese patients with juvenile amyotrophic lateral sclerosis. Clin Genet. 2017 Sep;92(3):267-273. doi: 10.1111/cge.13015. Epub 2017 Apr 20. PMID: 28429524.
Renbaum P, Kellerman E, Jaron R, Geiger D, Segel R, Lee M, King MC, Levy-Lahad E. Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am J Hum Genet. 2009 Aug;85(2):281-9. doi: 10.1016/j.ajhg.2009.07.006. Epub 2009 Jul 30. PMID: 19646678; PMCID: PMC2725266.
Kim J, Liao YH, Ionita C, Bale AE, Darras B, Acsadi G. Mitochondrial Membrane Protein-Associated Neurodegeneration Mimicking Juvenile Amyotrophic Lateral Sclerosis. Pediatr Neurol. 2016 Nov;64:83-86. doi: 10.1016/j.pediatrneurol.2016.08.013. Epub 2016 Aug 24. PMID: 27671242.
Zou ZY, Cui LY, Sun Q, Li XG, Liu MS, Xu Y, Zhou Y, Yang XZ. De novo FUS gene mutations are associated with juvenile-onset sporadic amyotrophic lateral sclerosis in China. Neurobiol Aging. 2013 Apr;34(4):1312.e1-8. doi: 10.1016/j.neurobiolaging.2012.09.005. Epub 2012 Oct 6. PMID: 23046859.
Teyssou E, Chartier L, Amador MD, Lam R, Lautrette G, Nicol M, Machat S, Da Barroca S, Moigneu C, Mairey M, Larmonier T, Saker S, Dussert C, Forlani S, Fontaine B, Seilhean D, Bohl D, Boillée S, Meininger V, Couratier P, Salachas F, Stevanin G, Millecamps S. Novel UBQLN2 mutations linked to amyotrophic lateral sclerosis and atypical hereditary spastic paraplegia phenotype through defective HSP70-mediated proteolysis. Neurobiol Aging. 2017 Oct;58:239.e11-239.e20. doi: 10.1016/j.neurobiolaging.2017.06.018. Epub 2017 Jun 24. PMID: 28716533.
Orban P, Devon RS, Hayden MR, Leavitt BR. Chapter 15 Juvenile amyotrophic lateral sclerosis. Handb Clin Neurol. 2007;82:301-12. doi: 10.1016/S0072-9752(07)80018-2. PMID: 18808900.
National Institutes of Health, Genetics Home Reference, “Amyotrophic lateral sclerosis,” reviewed March 2016; http://ghr.nlm.nih.gov/condition/amyotrophic-lateral-sclerosis. Accessed March 6, 2023.
Siddique N, Siddique T. Amyotrophic Lateral Sclerosis Overview. 2001 Mar 23 [Updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024.
Robberecht W, Eykens C. The genetic basis of amyotrophic lateral sclerosis: recent breakthroughs. Advances in Genomics and Genetics. 2015 Oct;327.
Kuraszkiewicz B, Goszczyńska H, Podsiadły-Marczykowska T, Piotrkiewicz M, Andersen P, Gromicho M, Grosskreutz J, Kuźma-Kozakiewicz M, Petri S, Stubbendorf B, Szacka K, Uysal H, de Carvalho M. Potential Preventive Strategies for Amyotrophic Lateral Sclerosis. Front Neurosci. 2020 May 26;14:428. doi: 10.3389/fnins.2020.00428. PMID: 32528241; PMCID: PMC7264408.
Browne EC, Abbott BM. Recent progress towards an effective treatment of amyotrophic lateral sclerosis using the SOD1 mouse model in a preclinical setting. Eur J Med Chem. 2016 Oct 4;121:918-925. doi: 10.1016/j.ejmech.2016.02.048. Epub 2016 Feb 23. PMID: 27012524.
Bruijn LI. Amyotrophic lateral sclerosis: from disease mechanisms to therapies. Biotechniques. 2002 May;32(5):1112, 1114, 1116 passim. doi: 10.2144/02325dd01. PMID: 12019785.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The copyright to the submitted manuscript is held by the Author, who grants the Journal of Medical Science (JMS) a nonexclusive licence to use, reproduce, and distribute the work, including for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.