Body composition analysis in patients with Hashimoto’s disease and vitamin D deficiency
DOI:
https://doi.org/10.20883/medical.e1084Keywords:
Hashimoto’s thyroiditis, obesity, body composition, vitamin D, muscle strenghtAbstract
Introduction. Hashimoto thyroiditis (HT) is one of the most common organ-specific autoimmune diseases. This autoimmune response disrupts thyroid function, affecting biochemical processes and metabolism, with symptoms often including weight gain and easy fatigue. Vitamin D has so far been considered only a key regulator of calcium-phosphate metabolism. However, it is now considered a pleiotropic substance and increasingly published data indicate that it also plays a role in immune modulation and metabolic health.
Aim. The study aimed to assess anthropometric measures, body composition, and muscle strength in patients with HT, correlate these parameters with serum 25(OH)D levels, and evaluate the impact of vitamin D supplementation.
Material and Methods. The study included 80 female patients, aged ≥18 years, divided into an HT group (n=51) and a Control Group with non-toxic diffuse or nodular goiter (n=29). Vitamin D supplementation was administered based on the initial 25(OH)D concentration, at a dose of 6000 IU or 4000 IU daily for 3 months to patients with 25(OH)D concentration < 20 ng/ml and ≥ 20 ng/ml, respectively. Anthropometric and body composition measurements, as well as blood tests for 25(OH)D, TSH were performed at baseline and after supplementation.
Results. Both groups showed significant increases in 25(OH)D levels post-supplementation. In the HT group, lean body mass and muscle strength improved significantly (p = 0.002 and p = 0.02, respectively). In the Control Group, muscle strength increased (p = 0.01) and hip circumference decreased slightly (p = 0.03). No significant differences were found in body composition between the groups, although women with HT had larger hip circumferences. Correlation analysis revealed a moderately strong inverse relationship between baseline 25(OH)D levels and BMI in the Control Group (R = -0.44; p = 0.04), with no other significant associations identified.
Conclusions. Vitamin D supplementation effectively increased serum 25(OH)D levels and improved muscle strength and lean body mass in women with HT. Further research is needed to explore the mechanisms by which vitamin D may impact metabolic and immune health in HT patients.
Downloads
References
Mincer DL, Jialal I. StatPearls: Hashimoto Thyroiditis. Treasure Island (FL); 2024.
Kawicka A, Regulska-Ilow B. Metabolic disorders and nutritional status in autoimmune thyroid diseases. Postepy Hig Med Dosw (Online). 2015;69:80–90. doi:10.5604/17322693.1136383.
Mendes MM, Botelho PB, Ribeiro H. Vitamin D and musculoskeletal health: Outstanding aspects to be considered in the light of current evidence. Endocr Connect. 2022 Sep 26;11(10):e210596. doi: 10.1530/EC-21-0596.
Wimalawansa SJ. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J Steroid Biochem Mol Biol. 2018;175:177–89. doi:10.1016/j.jsbmb.2016.09.017.
Galușca D, Popoviciu MS, Babeș EE, Vidican M, Zaha AA, Babeș VV, et al. Vitamin D Implications and Effect of Supplementation in Endocrine Disorders: Autoimmune Thyroid Disorders (Hashimoto's Disease and Grave's Disease), Diabetes Mellitus and Obesity. Medicina (Kaunas) 2022. doi:10.3390/medicina58020194.
Athanassiou L, Mavragani CP, Koutsilieris M. The Immunomodulatory Properties of Vitamin D. Mediterr J Rheumatol. 2022;33:7–13. doi:10.31138/mjr.33.1.7.
Corrado A, Rotondo C, Sanpaolo ER, Altomare A, Maruotti N, Cici D, Cantatore FP. 1,25OH-Vitamin D3 and IL-17 Inhibition Modulate Pro-Fibrotic Cytokines Production in Peripheral Blood Mononuclear Cells of Patients with Systemic Sclerosis. Int J Med Sci. 2022;19:867–77. doi:10.7150/ijms.70984.
Płudowski P, Ducki C, Konstantynowicz J, Jaworski M. Vitamin D status in Poland. Pol Arch Med Wewn. 2016;126:530–9. doi:10.20452/pamw.3479.
Ding C, Parameswaran V, Blizzard L, Burgess J, Jones G. Not a simple fat-soluble vitamin: Changes in serum 25-(OH)D levels are predicted by adiposity and adipocytokines in older adults. J Intern Med. 2010;268:501–10. doi:10.1111/j.1365-2796.2010.02267.x.
Vashi PG, Lammersfeld CA, Braun DP, Gupta D. Serum 25-hydroxyvitamin D is inversely associated with body mass index in cancer. Nutr J. 2011;10:51. doi:10.1186/1475-2891-10-51.
Tosunbayraktar G, Bas M, Kut A, Buyukkaragoz AH. Low serum 25(OH)D levels are assocıated to hıgher BMI and metabolic syndrome parameters in adult subjects in Turkey. Afr Health Sci. 2015;15:1161–9. doi:10.4314/ahs.v15i4.15.
Saneei P, Salehi-Abargouei A, Esmaillzadeh A. Serum 25-hydroxy vitamin D levels in relation to body mass index: A systematic review and meta-analysis. Obes Rev. 2013;14:393–404. doi:10.1111/obr.12016.
Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pilz S, Hiraki LT, et al. Causal relationship between obesity and vitamin D status: Bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;10:e1001383. doi:10.1371/journal.pmed.1001383.
Park CY, Han SN. The Role of Vitamin D in Adipose Tissue Biology: Adipocyte Differentiation, Energy Metabolism, and Inflammation. J Lipid Atheroscler. 2021;10:130–44. doi:10.12997/jla.2021.10.2.130.
Walsh JS, Bowles S, Evans AL. Vitamin D in obesity. Curr Opin Endocrinol Diabetes Obes. 2017;24:389–94. doi:10.1097/MED.0000000000000371.
McCarty MF, Thomas CA. PTH excess may promote weight gain by impeding catecholamine-induced lipolysis-implications for the impact of calcium, vitamin D, and alcohol on body weight. Med Hypotheses. 2003;61:535–42. doi:10.1016/s0306-9877(03)00227-5.
Baradaran A, Behradmanesh S, Nasri H. Association of body mass index and serum vitamin D level in healthy Iranian adolescents. Endokrynol Pol. 2012;63:29–33.
Delinocente MLB, Luiz MM, Oliveira DC de, Souza AF de, Ramírez PC, Oliveira Máximo R de, et al. Are Serum 25-Hydroxyvitamin D Deficiency and Insufficiency Risk Factors for the Incidence of Dynapenia? Calcif Tissue Int. 2022;111:571–9. doi:10.1007/s00223-022-01021-8.
Moreira-Pfrimer LDF, Pedrosa MAC, Teixeira L, Lazaretti-Castro M. Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: A randomized double-blind controlled trial. Ann Nutr Metab. 2009;54:291–300. doi:10.1159/000235874.
Al Hayek S, Matar Bou Mosleh J, Ghadieh R, El Hayek Fares J. Vitamin D status and body composition: A cross-sectional study among employees at a private university in Lebanon. BMC Nutr. 2018;4:31. doi:10.1186/s40795-018-0239-6.
Karefylakis C, Särnblad S, Ariander A, Ehlersson G, Rask E, Rask P. Effect of Vitamin D supplementation on body composition and cardiorespiratory fitness in overweight men-a randomized controlled trial. Endocrine. 2018;61:388–97. doi:10.1007/s12020-018-1665-6.
Karampela I, Sakelliou A, Vallianou N, Christodoulatos G-S, Magkos F, Dalamaga M. Vitamin D and Obesity: Current Evidence and Controversies. Curr Obes Rep. 2021;10:162–80. doi:10.1007/s13679-021-00433-1.
Płudowski P, Kos-Kudła B, Walczak M, Fal A, Zozulińska-Ziółkiewicz D, Sieroszewski P, et al. Guidelines for Preventing and Treating Vitamin D Deficiency: A 2023 Update in Poland. Nutrients 2023. doi:10.3390/nu15030695.
Golzarand M, Hollis BW, Mirmiran P, Wagner CL, Shab-Bidar S. Vitamin D supplementation and body fat mass: A systematic review and meta-analysis. Eur J Clin Nutr. 2018;72:1345–57. doi:10.1038/s41430-018-0132-z.
Sun X, Tanisawa K, Zhang Y, Ito T, Oshima S, Higuchi M, Cao Z-B. Effect of Vitamin D Supplementation on Body Composition and Physical Fitness in Healthy Adults: A Double-Blind, Randomized Controlled Trial. Ann Nutr Metab. 2019;75:231–7. doi:10.1159/000504873.
Cangussu LM, Nahas-Neto J, Orsatti CL, Bueloni-Dias FN, Nahas EAP. Effect of vitamin D supplementation alone on muscle function in postmenopausal women: A randomized, double-blind, placebo-controlled clinical trial. Osteoporos Int. 2015;26:2413–21. doi:10.1007/s00198-015-3151-9.
Zhang J-L, Poon CC-W, Wong M-S, Li W-X, Guo Y-X, Zhang Y. Vitamin D Supplementation Improves Handgrip Strength in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Endocrinol (Lausanne). 2022;13:863448. doi:10.3389/fendo.2022.863448.
Manson JE, Cook NR, Lee I-M, Christen W, Bassuk SS, Mora S, et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N Engl J Med. 2019;380:33–44. doi:10.1056/NEJMoa1809944.
Wolf M, Weigert A, Kreymann G. Body composition and energy expenditure in thyroidectomized patients during short-term hypothyroidism and thyrotropin-suppressive thyroxine therapy. Eur J Endocrinol. 1996;134:168–73. doi:10.1530/eje.0.1340168.
Mousa U, Bozkuş Y, Kut A, Demir CC, Tutuncu NB. Fat distribution and metabolic profile in subjects with Hashimoto`s thyroiditis. Acta Endocrinol (Buchar). 2018;14:105–12. doi:10.4183/aeb.2018.105.
Adamska A, Popławska-Kita A, Siewko K, Łebkowska A, Krentowska A, Buczyńska A, et al. Body Composition and Serum Anti-Müllerian Hormone Levels in Euthyroid Caucasian Women With Hashimoto Thyroiditis. Front Endocrinol (Lausanne). 2021;12:657752. doi:10.3389/fendo.2021.657752.
Knudsen N, Laurberg P, Rasmussen LB, Bülow I, Perrild H, Ovesen L, Jørgensen T. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab. 2005;90:4019–24. doi:10.1210/jc.2004-2225.
Dvořáková M, Hill M, Čeřovská J, Pobišová Z, Bílek R, Hoskovcová P, et al. Relationship between pituitary-thyroid axis hormones and anthropometric parameters in Czech adult population. Physiol Res. 2008;57 Suppl 1:S127-S134. doi:10.33549/physiolres.931497.
Mele C, Mai S, Cena T, Pagano L, Scacchi M, Biondi B, et al. The pattern of TSH and fT4 levels across different BMI ranges in a large cohort of euthyroid patients with obesity. Front Endocrinol (Lausanne). 2022;13:1029376. doi:10.3389/fendo.2022.1029376.
Fox CS, Pencina MJ, D'Agostino RB, Murabito JM, Seely EW, Pearce EN, Vasan RS. Relations of thyroid function to body weight: Cross-sectional and longitudinal observations in a community-based sample. Arch Intern Med. 2008;168:587–92. doi:10.1001/archinte.168.6.587.
Díez JJ, Iglesias P. Relationship between thyrotropin and body mass index in euthyroid subjects. Exp Clin Endocrinol Diabetes. 2011;119:144–50. doi:10.1055/s-0030-1265133.
Makepeace AE, Bremner AP, O'Leary P, Leedman PJ, Feddema P, Michelangeli V, Walsh JP. Significant inverse relationship between serum free T4 concentration and body mass index in euthyroid subjects: Differences between smokers and nonsmokers. Clin Endocrinol (Oxf). 2008;69:648–52. doi:10.1111/j.1365-2265.2008.03239.x.
Manji N, Boelaert K, Sheppard MC, Holder RL, Gough SC, Franklyn JA. Lack of association between serum TSH or free T4 and body mass index in euthyroid subjects. Clin Endocrinol (Oxf). 2006;64:125–8. doi:10.1111/j.1365-2265.2006.02433.x.
Reinehr T. Obesity and thyroid function. Mol Cell Endocrinol. 2010;316:165–71. doi:10.1016/j.mce.2009.06.005.
Hutcheson J. Adipokines influence the inflammatory balance in autoimmunity. Cytokine. 2015;75:272–9. doi:10.1016/j.cyto.2015.04.004.
Fain JN. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm. 2006;74:443–77. doi:10.1016/S0083-6729(06)74018-3.
Nillni EA, Vaslet C, Harris M, Hollenberg A, Bjørbak C, Flier JS. Leptin regulates prothyrotropin-releasing hormone biosynthesis. Evidence for direct and indirect pathways. J Biol Chem. 2000;275:36124–33. doi:10.1074/jbc.M003549200.
Seoane LM, Carro E, Tovar S, Casanueva FF, Dieguez C. Regulation of in vivo TSH secretion by leptin. Regul Pept. 2000;92:25–9. doi:10.1016/s0167-0115(00)00145-2.
Bossowski A, Sawicka B, Szalecki M, Koput A, Wysocka J, Zelazowska-Rutkowska B. Analysis of serum adiponectin, resistin and leptin levels in children and adolescents with autoimmune thyroid disorders. J Pediatr Endocrinol Metab. 2010;23:369–77. doi:10.1515/jpem.2010.058.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The copyright to the submitted manuscript is held by the Author, who grants the Journal of Medical Science (JMS) a nonexclusive licence to use, reproduce, and distribute the work, including for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.