Mechanisms behind corticosteroid resistance in obesity-induced airway inflammation – a review
DOI:
https://doi.org/10.20883/medical.e1034Keywords:
Obesity related asthma, corticosteroid resistance, NLRP3 inflammasome, glucocorticoid receptor, bariatric surgery, GLP-1 analogsAbstract
Obese non-eosinophilic asthma is defined as more severe asthma with severe symptoms, moderate airway hyperresponsiveness, elevated blood neutrophils, elevated biomarkers of non-type-2 inflammation, and low responsiveness to inhaled corticosteroids. Increased BMI is associated with a faster decline of FEV1 and FVC in adult asthmatics. The increased leptin concentration is connected with asthma by its ability to induce airway remodelling. Obesity-associated airway hyperresponsiveness is possibly mediated by NLRP3 inflammasome, IL-1β, and ILC3 cells. Increased sputum expression of NLRP3 and IL-1β is linked with increased neutrophil numbers, airflow obstruction, and worse asthma control. Accumulation of proinflammatory cytokines like IL-17, IL-1β, TNF-α, and reactive oxygen and nitrogen species contributes to corticosteroid resistance in obese asthmatics. The processes on the cellular level leading to steroid hyporesponsiveness include a reduced level of glucocorticoid receptor (GR) isoform - GR-α, the dysregulation of the isoforms concentration GR-α/GR-β, increased phosphorylation at Ser 226, and decreased expression of histone deacetylase 2. The best way to improve sensitivity to corticosteroids in this patient group is weight loss. Bariatric surgery is the most effective solution. However, patients may find it beneficial to implement lifestyle changes or to use GLP-1 analogues. Identifying underlying mechanisms of resistance to corticosteroids in obese asthmatics will allow for more effective asthma treatment in the future and could lead to long-term reduction of treatment costs.
Downloads
References
Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2022. Available from:www.ginasthma.org
Al Heialy S, Ramakrishnan RK, Hamid Q. Recent advances in the immunopathogenesis of severe asthma. J Allergy Clin Immunol. 2022;149:455–465. doi: 10.1016/j.jaci.2021.12.765. Cited: in: : PMID: 35125181.
Tashiro H, Shore SA. Obesity and severe asthma. Allergol Int. 2019;68:135–142. doi:/;10.1016/j.alit.2018.10.004. Cited: in: : PMID: 30509734.
Gibeon D, Batuwita K, Osmond M, Heaney LG, Brightling CE, Niven R, Mansur A, Chaudhuri R, Bucknall CE, Rowe A, et al. Obesity-associated severe asthma represents a distinct clinical phenotype: analysis of the British Thoracic Society Difficult Asthma Registry Patient cohort according to BMI. Chest. 2013;143:406–414. doi:10.1378/chest.12-0872. Cited: in: : PMID: 23064546.
Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, Wardlaw AJ, Green RH. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178:218–224. doi:10.1164/rccm.200711-1754OC. Cited: in: : PMID: 18480428.
Wood LG, Baines KJ, Fu J, Scott HA, Gibson PG. The neutrophilic inflammatory phenotype is associated with systemic inflammation in asthma. Chest. 2012;142:86–93. doi: 10.1378/chest.11-1838. Cited: in: : PMID: 22345378.
Winsa-Lindmark S, Stridsman C, Sahlin A, Hedman L, Stenfors N, Myrberg T, Lindberg A, Rönmark E, Backman H. Severity of adult-onset asthma - a matter of blood neutrophils and severe obesity. Respir Med. 2023;219:107418. doi: 10.1016/j.rmed.2023.107418. Cited: in: : PMID: 37769879.
Goleva E, Covar R, Martin RJ, Leung DYM. Corticosteroid pharmacokinetic abnormalities in overweight and obese corticosteroid resistant asthmatics. J Allergy Clin Immunol Pract. 2016;4:357-360.e2. doi:10.1016/j.jaip.2015.11.013. Cited: in: : PMID: 26795244.
Tashiro H, Kurihara Y, Kuwahara Y, Takahashi K. Impact of obesity in asthma: Possible future therapies. Allergol Int. 2024;73:48–57. doi: 10.1016/j.alit.2023.08.007. Cited: in: : PMID: 37659887.
Bermúdez Barón N, Kankaanranta H, Hedman L, Andersson M, Stridsman C, Lindberg A, Rönmark E, Backman H. Body mass index increase: a risk factor for forced expiratory volume in 1 s decline for overweight and obese adults with asthma. ERJ Open Res. 2022;8:00110–02022. doi:10.1183/23120541.00110-2022. Cited: in: : PMID: 36299358.
Tashiro H, Takahashi K, Kurihara Y, Sadamatsu H, Kuwahara Y, Tajiri R, Kimura S, Sueoka-Aragane N. Obesity affects pulmonary function in Japanese adult patients with asthma, but not those without asthma. Sci Rep. 2022;12:16457. doi: 10.1038/s41598-022-20924-y. Cited: in: : PMID: 36180514.
Forno E, Weiner DJ, Mullen J, Sawicki G, Kurland G, Han YY, Cloutier MM, Canino G, Weiss ST, Litonjua AA, et al. Obesity and Airway Dysanapsis in Children with and without Asthma. Am J Respir Crit Care Med. 2017;195:314–323. doi: 10.1164/rccm.201605-1039OC. Cited: in: : PMID: 27552676.
Kollari E, Zografou I, Sampanis C, Athyros VG, Didangelos T, Mantzoros CS, Karagiannis A. Serum adipokine levels in patients with type 1 diabetes are associated with degree of obesity but only resistin is independently associated with atherosclerosis markers. Hormones (Athens). 2022;21:91–101. doi: 10.1007/s42000-021-00328-9. Cited: in: : PMID: 34716910..
Shi C, Zhu L, Chen X, Gu N, Chen L, Zhu L, Yang L, Pang L, Guo X, Ji C, et al. IL-6 and TNF-α induced obesity-related inflammatory response through transcriptional regulation of miR-146b. J Interferon Cytokine Res. 2014;34:342–348. doi: 10.1089/jir.2013.0078. Cited: in: : PMID: 24428800
Thrum S, Sommer M, Raulien N, Gericke M, Massier L, Kovacs P, Krasselt M, Landgraf K, Körner A, Dietrich A, et al. Macrophages in obesity are characterised by increased IL-1β response to calcium-sensing receptor signals. Int J Obes (Lond). 2022;46:1883–1891. doi: 10.1038/s41366-022-01135-x. Cited: in: : PMID: 35931812.
Ahmad R, Thomas R, Kochumon S, Sindhu S. Increased adipose tissue expression of IL-18R and its ligand IL-18 associates with inflammation and insulin resistance in obesity. Immun Inflamm Dis. 2017;5:318–335. doi: 10.1002/iid3.170. Cited: in: : PMID: 28508444.
Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13:851–863. doi: 10.5114/aoms.2016.58928. Cited: in: : PMID: 28721154.
Bantulà M, Roca-Ferrer J, Arismendi E, Picado C. Asthma and Obesity: Two Diseases on the Rise and Bridged by Inflammation. JCM. 2021;10:169. doi: 10.3390/jcm10020169.
Arismendi E, Bantulà M, Picado C. Obese Asthma Syndrome: Much Work to Do. Archivos de Bronconeumología. 2023;59:473–475. doi: 10.1016/j.arbres.2023.02.012.
Halberg N, Wernstedt-Asterholm I, Scherer PE. The Adipocyte as an Endocrine Cell. Endocrinology and Metabolism Clinics of North America. 2008;37:753–768. doi: 10.1016/j.ecl.2008.07.002.
Zhang C, Luo X, Zhang D, Deng B, Tong J, Zhang M, Chen L, Duan H, Niu W. Hypoxic adipocytes induce macrophages to release inflammatory cytokines that render skeletal muscle cells insulin resistant. Biochem Biophys Res Commun. 2020;521:625–631. doi: 10.1016/j.bbrc.2019.10.162. Cited: in: : PMID: 31677795.
Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research. 2005;46:2347–2355. doi: 10.1194/jlr.M500294-JLR200.
De Heredia FP, Gómez-Martínez S, Marcos A. Obesity, inflammation and the immune system. Proc Nutr Soc. 2012;71:332–338. doi: 10.1017/S0029665112000092.
Park HJ, Lee J-H, Park YH, Han H, Sim DW, Park KH, Park J-W. Roflumilast Ameliorates Airway Hyperresponsiveness Caused by Diet-Induced Obesity in a Murine Model. Am J Respir Cell Mol Biol. 2016;55:82–91. doi: 10.1165/rcmb.2015-0345OC. Cited: in: : PMID: 26756251
Farzan S, Coyle T, Coscia G, Rebaza A, Santiago M. Clinical Characteristics and Management Strategies for Adult Obese Asthma Patients. J Asthma Allergy. 2022;15:673–689. doi: 10.2147/JAA.S285738. Cited: in: : PMID: 35611328.
Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, Portincasa P, Colina I, Gómez-Ambrosi J. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci Rep. 2017;7:6619. doi: 10.1038/s41598-017-06997-0.
Watanabe K, Suzukawa M, Kawauchi-Watanabe S, Igarashi S, Asari I, Imoto S, Tashimo H, Fukami T, Hebisawa A, Tohma S, et al. Leptin-producing monocytes in the airway submucosa may contribute to asthma pathogenesis. Respir Investig. 2023;61:5–15. doi: 10.1016/j.resinv.2022.09.005. Cited: in: : PMID: 36369154
Tian Z, Sun R, Wei H, Gao B. Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochemical and Biophysical Research Communications. 2002;298:297–302. doi: 10.1016/S0006-291X(02)02462-2.
Matarese G, Moschos S, Mantzoros CS. Leptin in Immunology. The Journal of Immunology. 2005;174:3137–3142. doi: 10.4049/jimmunol.174.6.3137.
Santos Coelho R, Paula Castro Melo A, Dos Santos Silva H, De Cassia Ribeiro Silva R, Maria Alvim Matos S, Lima Barreto M, Maria Alcântara-Neves N, Alexandrina Viana De Figueiredo C, Do Santos Costa R. ADIPOQ and LEP variants on asthma and atopy: Genetic association modified by overweight. Gene. 2021;781:145540. doi: 10.1016/j.gene.2021.145540.
Bruno A, Pace E, Chanez P, Gras D, Vachier I, Chiappara G, La Guardia M, Gerbino S, Profita M, Gjomarkaj M. Leptin and leptin receptor expression in asthma. Journal of Allergy and Clinical Immunology. 2009;124:230-237.e4. doi: 10.1016/j.jaci.2009.04.032.
Suzukawa M, Koketsu R, Baba S, Igarashi S, Nagase H, Yamaguchi M, Matsutani N, Kawamura M, Shoji S, Hebisawa A, et al. Leptin enhances ICAM-1 expression, induces migration and cytokine synthesis, and prolongs survival of human airway epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2015;309:L801–L811. doi: 10.1152/ajplung.00365.2014.
Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta. 2007;380:24–30. doi: 10.1016/j.cca.2007.01.026. Cited: in: : PMID: 17343838
Kim HY, Lee HJ, Chang Y-J, Pichavant M, Shore SA, Fitzgerald KA, Iwakura Y, Israel E, Bolger K, Faul J, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54–61. doi: 10.1038/nm.3423. Cited: in: : PMID: 24336249.
Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–832. doi: 10.1016/j.cell.2010.01.040. Cited: in: : PMID: 20303873
Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183:787–791. doi: 10.4049/jimmunol.0901363. Cited: in: : PMID: 19570822.
Khalil BA, Sharif-Askari NS, Halwani R. Role of inflammasome in severe, steroid-resistant asthma. Current Research in Immunology. 2023;4:100061. doi: 10.1016/j.crimmu.2023.100061.
Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. IJMS. 2019;20:3328. doi: 10.3390/ijms20133328.
Simpson JL, Phipps S, Baines KJ, Oreo KM, Gunawardhana L, Gibson PG. Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. European Respiratory Journal. 2014;43:1067–1076. doi: 10.1183/09031936.00105013.
Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ, Brown AC, Mayall JR, Ali MK, Starkey MR, Hansbro NG, et al. Role for NLRP3 Inflammasome–mediated, IL-1β–Dependent Responses in Severe, Steroid-Resistant Asthma. Am J Respir Crit Care Med. 2017;196:283–297. doi: 10.1164/rccm.201609-1830OC.
Wood LG, Li Q, Scott HA, Rutting S, Berthon BS, Gibson PG, Hansbro PM, Williams E, Horvat J, Simpson JL, et al. Saturated fatty acids, obesity, and the nucleotide oligomerization domain–like receptor protein 3 (NLRP3) inflammasome in asthmatic patients. Journal of Allergy and Clinical Immunology. 2019;143:305–315. doi:10.1016/j.jaci.2018.04.037.
Tan HT, Hagner S, Ruchti F, Radzikowska U, Tan G, Altunbulakli C, Eljaszewicz A, Moniuszko M, Akdis M, Akdis CA, et al. Tight junction, mucin, and inflammasome‐related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy. 2019;74:294–307. doi: 10.1111/all.13619.
Chesné J, Braza F, Mahay G, Brouard S, Aronica M, Magnan A. IL-17 in severe asthma. Where do we stand? Am J Respir Crit Care Med. 2014;190:1094–1101. doi: 10.1164/rccm.201405-0859PP. Cited: in: : PMID: 25162311.
He LX, Yang L, Liu T, Li YN, Huang TX, Zhang LL, Luo J, Liu CT. Group 3 innate lymphoid cells secret neutrophil chemoattractants and are insensitive to glucocorticoid via aberrant GR phosphorylation. Respir Res. 2023;24:90. doi: 10.1186/s12931-023-02395-5.
Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin S-L. Randomized, Double-Blind, Placebo-controlled Study of Brodalumab, a Human Anti–IL-17 Receptor Monoclonal Antibody, in Moderate to Severe Asthma. Am J Respir Crit Care Med. 2013;188:1294–1302. doi: 10.1164/rccm.201212-2318OC.Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. Journal of Allergy and Clinical Immunology. 2013;132:1033–1044. doi: 10.1016/j.jaci.2013.09.007.
Rossios C, Pavlidis S, Hoda U, Kuo C-H, Wiegman C, Russell K, Sun K, Loza MJ, Baribaud F, Durham AL, et al. Sputum transcriptomics reveal upregulation of IL-1 receptor family members in patients with severe asthma. Journal of Allergy and Clinical Immunology. 2018;141:560–570. doi: 10.1016/j.jaci.2017.02.045.
Horvat JC, Kim RY, Weaver N, Augood C, Brown AC, Donovan C, Dupre P, Gunawardhana L, Mayall JR, Hansbro NG, et al. Characterization and inhibition of inflammasome responses in severe and non-severe asthma. Respir Res. 2023;24:303. doi: 10.1186/s12931-023-02603-2.
Panda L, Mabalirajan U. Recent Updates on Corticosteroid Resistance in Asthma. EMJ. 2018;49–57. doi: 10.33590/emj/10311987.
Zijlstra GJ, Ten Hacken NHT, Hoffmann RF, Van Oosterhout AJM, Heijink IH. Interleukin-17A induces glucocorticoid insensitivity in human bronchial epithelial cells. European Respiratory Journal. 2012;39:439–445. doi: 10.1183/09031936.00017911.
Al Heialy S, Gaudet M, Ramakrishnan RK, Mogas A, Salameh L, Mahboub B, Hamid Q. Contribution of IL-17 in Steroid Hyporesponsiveness in Obese Asthmatics Through Dysregulation of Glucocorticoid Receptors α and β. Front Immunol. 2020;11:1724. doi: 10.3389/fimmu.2020.01724.
Wang M, Gao P, Wu X, Chen Y, Feng Y, Yang Q, Xu Y, Zhao J, Xie J. Impaired anti-inflammatory action of glucocorticoid in neutrophil from patients with steroid-resistant asthma. Respir Res. 2016;17:153. doi: 10.1186/s12931-016-0462-0.
Vazquez‐Tello A, Semlali A, Chakir J, Martin JG, Leung DY, Eidelman DH, Hamid Q. Induction of glucocorticoid receptor‐β expression in epithelial cells of asthmatic airways by T‐helper type 17 cytokines. Clin Experimental Allergy. 2010;40:1312–1322. doi: 10.1111/j.1365-2222.2010.03544.x.
Li L-B, Leung DYM, Goleva E. Activated p38 MAPK in Peripheral Blood Monocytes of Steroid Resistant Asthmatics. PLoS One. 2015;10:e0141909. doi: 10.1371/journal.pone.0141909. Cited: in: : PMID: 26517722.
Alcorn JF, Crowe CR, Kolls JK. T H 17 Cells in Asthma and COPD. Annu Rev Physiol. 2010;72:495–516. doi: 10.1146/annurev-physiol-021909-135926.
Ruijter AJMD, Gennip AHV, Caron HN, Kemp S, Kuilenburg ABPV. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochemical Journal. 2003;370:737–749. doi: 10.1042/bj20021321.
Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ, Adcock IM. Histone deacetylase 2–mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. The Journal of Experimental Medicine. 2006;203:7–13. doi: 10.1084/jem.20050466.
Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S, Adcock IM, Hogg JC, et al. Decreased Histone Deacetylase Activity in Chronic Obstructive Pulmonary Disease. N Engl J Med. 2005;352:1967–1976. doi: 10.1056/NEJMoa041892.
Osoata GO, Yamamura S, Ito M, Vuppusetty C, Adcock IM, Barnes PJ, Ito K. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun. 2009;384:366–371. doi: 10.1016/j.bbrc.2009.04.128. Cited: in: : PMID: 19410558.
Erzurum SC. New Insights in Oxidant Biology in Asthma. Annals ATS. 2016;13:S35–S39. doi: 10.1513/AnnalsATS.201506-385MG.
North ML, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2009;296:L911–L920. doi: 10.1152/ajplung.00025.2009.
North ML, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am J Physiol Lung Cell Mol Physiol. 2009;296:L911-920. doi: 10.1152/ajplung.00025.2009. Cited: in: : PMID: 19286931.
Grasemann H, Holguin F. Oxidative stress and obesity-related asthma. Paediatric Respiratory Reviews. 2021;37:18–21. doi: 10.1016/j.prrv.2020.05.004.
Guerron AD, Ortega CB, Lee H-J, Davalos G, Ingram J, Portenier D. Asthma medication usage is significantly reduced following bariatric surgery. Surg Endosc. 2019;33:1967–1975. doi: 10.1007/s00464-018-6500-x.
Lea S, Harbron C, Khan N, Booth G, Armstrong J, Singh D. Corticosteroid insensitive alveolar macrophages from asthma patients; synergistic interaction with a p38 mitogen‐activated protein kinase ( MAPK ) inhibitor. Brit J Clinical Pharma. 2015;79:756–766. doi: 10.1111/bcp.12536.
Marks-Konczalik J, Costa M, Robertson J, McKie E, Yang S, Pascoe S. A post-hoc subgroup analysis of data from a six month clinical trial comparing the efficacy and safety of losmapimod in moderate-severe COPD patients with ≤2% and >2% blood eosinophils. Respiratory Medicine. 2015;109:860–869. doi: 10.1016/j.rmed.2015.05.003.
Patel N, Cunoosamy D, Fagerås M, Taib Z, Asimus S, Hegelund-Myrbäck T, Lundin S, Pardali K, Kurian N, Ersdal E, et al. The development of AZD7624 for prevention of exacerbations in COPD: a randomized controlled trial. COPD. 2018;Volume 13:1009–1019. doi: 10.2147/COPD.S150576.
Jiang Y, Liu Bi, Bao X, Zhou P, Li J. TNF-α Regulates the Glucocorticoid Receptor Alpha Expression in Human Nasal Epithelial Cells Via p65-NF-κb and p38-MAPK Signaling Pathways. IRAN J BIOTECH [Internet]. 2023 [cited 2024 Apr 21];21. doi: 10.30498/ijb.2022.298590.3117.
Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlén S-E, Holgate ST, Meyers DA, Rabe KF, Antczak A, et al. A Randomized, Double-blind, Placebo-controlled Study of Tumor Necrosis Factor-αBlockade in Severe Persistent Asthma. Am J Respir Crit Care Med. 2009;179:549–558. doi: 10.1164/rccm.200809-1512OC.
Holgate ST, Noonan M, Chanez P, Busse W, Dupont L, Pavord I, Hakulinen A, Paolozzi L, Wajdula J, Zang C, et al. Efficacy and safety of etanercept in moderate-to-severe asthma: a randomised, controlled trial. European Respiratory Journal. 2011;37:1352–1359. doi: 10.1183/09031936.00063510].
Hossain N, Arhi C, Borg C-M. Is Bariatric Surgery Better than Nonsurgical Weight Loss for Improving Asthma Control? A Systematic Review. OBES SURG. 2021;31:1810–1832. doi: 10.1007/s11695-021-05255-7.
Maniscalco M, Zamparelli AS, Vitale DF, Faraone S, Molino A, Zedda A, Motta A. Long-term effect of weight loss induced by bariatric surgery on asthma control and health related quality of life in asthmatic patients with severe obesity: A pilot study. Respiratory Medicine. 2017;130:69–74. doi: 10.1016/j.rmed.2017.06.010.
Kaplan A, Szefler SJ, Halpin DMG. Impact of comorbid conditions on asthmatic adults and children. npj Prim Care Respir Med. 2020;30:36. doi: 10.1038/s41533-020-00194-9.
Sideleva O, Suratt BT, Black KE, Tharp WG, Pratley RE, Forgione P, Dienz O, Irvin CG, Dixon AE. Obesity and Asthma: An Inflammatory Disease of Adipose Tissue Not the Airway. Am J Respir Crit Care Med. 2012;186:598–605. doi: 10.1164/rccm.201203-0573OC.
Womble JT, Ihrie MD, McQuade VL, Hegde A, McCravy MS, Phatak S, Tighe RM, Que LG, D’Alessio D, Walker JKL, et al. Vertical sleeve gastrectomy associates with airway hyperresponsiveness in a murine model of allergic airway disease and obesity. Front Endocrinol. 2023;14:1092277. doi: 10.3389/fendo.2023.1092277.
Sánchez-Alcoholado L, Gutiérrez-Repiso C, Gómez-Pérez AM, García-Fuentes E, Tinahones FJ, Moreno-Indias I. Gut microbiota adaptation after weight loss by Roux-en-Y gastric bypass or sleeve gastrectomy bariatric surgeries. Surg Obes Relat Dis. 2019;15:1888–1895. doi: 10.1016/j.soard.2019.08.551. Cited: in: : PMID: 31648978.
Michalovich D, Rodriguez-Perez N, Smolinska S, Pirozynski M, Mayhew D, Uddin S, Van Horn S, Sokolowska M, Altunbulakli C, Eljaszewicz A, et al. Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nat Commun. 2019;10:5711. doi: 10.1038/s41467-019-13751-9.
Nguyen NT, Hinojosa MW, Smith BR, Gray J, Varela E. Improvement of restrictive and obstructive pulmonary mechanics following laparoscopic bariatric surgery. Surg Endosc. 2009;23:808–812. doi: 10.1007/s00464-008-0084-9.
Özbey Ü, Balaban S, Sözener ZÇ, Uçar A, Mungan D, Mısırlıgil Z. The effects of diet-induced weight loss on asthma control and quality of life in obese adults with asthma: a randomized controlled trial. Journal of Asthma. 2020;57:618–626. doi: 10.1080/02770903.2019.1590594.
Scott HA, Gibson PG, Garg ML, Pretto JJ, Morgan PJ, Callister R, Wood LG. Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: a randomized trial. Clin Experimental Allergy. 2013;43:36–49. doi: 10.1111/cea.12004.
Romieu I, Barraza-Villarreal A, Escamilla-Núñez C, Texcalac-Sangrador JL, Hernandez-Cadena L, Díaz-Sánchez D, De Batlle J, Del Rio-Navarro BE. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants. Respir Res. 2009;10:122. doi: 10.1186/1465-9921-10-122.
Freitas PD, Ferreira PG, Silva AG, Stelmach R, Carvalho-Pinto RM, Fernandes FLA, Mancini MC, Sato MN, Martins MA, Carvalho CRF. The Role of Exercise in a Weight-Loss Program on Clinical Control in Obese Adults with Asthma. A Randomized Controlled Trial. Am J Respir Crit Care Med. 2017;195:32–42. doi: 10.1164/rccm.201603-0446OC.
Jiao J, Castro M. Vitamin D and asthma: current perspectives. Current Opinion in Allergy & Clinical Immunology. 2015;15:375–382. doi: 10.1097/ACI.0000000000000187.
Peters MC, Schiebler ML, Cardet JC, Johansson MW, Sorkness R, DeBoer MD, Bleecker ER, Meyers DA, Castro M, Sumino K, et al. The Impact of Insulin Resistance on Loss of Lung Function and Response to Treatment in Asthma. Am J Respir Crit Care Med. 2022;206:1096–1106. doi: 10.1164/rccm.202112-2745OC. Cited: in: : PMID: 35687105.
Wang J-Y, Wang Q-W, Yang X-Y, Yang W, Li D-R, Jin J-Y, Zhang H-C, Zhang X-F. GLP-1 receptor agonists for the treatment of obesity: Role as a promising approach. Front Endocrinol (Lausanne). 2023;14:1085799. doi: 10.3389/fendo.2023.1085799. Cited: in: : PMID: 36843578.
Popoviciu M-S, Păduraru L, Yahya G, Metwally K, Cavalu S. Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. Int J Mol Sci. 2023;24:10449. doi: 10.3390/ijms241310449. Cited: in: : PMID: 37445623.
Ojeniran M, Dube B, Paige A, Ton J, Lindblad AJ. Semaglutide for weight loss. Can Fam Physician. 2021;67:842. doi: 10.46747/cfp.6711842. Cited: in: : PMID: 34772713.
Toki S, Newcomb DC, Printz RL, Cahill KN, Boyd KL, Niswender KD, Peebles RS. Glucagon‐like peptide‐1 receptor agonist inhibits aeroallergen‐induced activation of ILC2 and neutrophilic airway inflammation in obese mice. Allergy. 2021;76:3433–3445. doi: 10.1111/all.14879.
Foer D, Beeler PE, Cui J, Karlson EW, Bates DW, Cahill KN. Asthma Exacerbations in Patients with Type 2 Diabetes and Asthma on Glucagon-like Peptide-1 Receptor Agonists. Am J Respir Crit Care Med. 2021;203:831–840. doi: 10.1164/rccm.202004-0993OC
Brusselle GG, VanderStichele C, Jordens P, Deman R, Slabbynck H, Ringoet V, Verleden G, Demedts IK, Verhamme K, Delporte A, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68:322–329. doi: 10.1136/thoraxjnl-2012-202698.
Gibson PG, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, Jenkins C, Peters MJ, Marks GB, Baraket M, et al. Efficacy of azithromycin in severe asthma from the AMAZES randomised trial. ERJ Open Res. 2019;5:00056–02019. doi: 10.1183/23120541.00056-2019.
Thomas D, McDonald VM, Stevens S, Baraket M, Hodge S, James A, Jenkins C, Marks GB, Peters M, Reynolds PN, et al. Effect of Azithromycin on Asthma Remission in Adults With Persistent Uncontrolled Asthma: A Secondary Analysis of a Randomized, Double-Anonymized, Placebo-Controlled Trial. Chest. 2024;166:262–270. doi: 10.1016/j.chest.2024.02.048. Cited: in: : PMID: 38431051.
Tashiro H, Takahashi K, Uchida M, Kurihara Y, Sadamatsu H, Takamori A, Kimura S, Sueoka-Aragane N. Effect of Azithromycin on Exacerbations in Asthma Patients with Obesity: Protocol for a Multi-Center, Prospective, Single-Arm Intervention Study. Int J Environ Res Public Health. 2023;20:1861. doi: 10.3390/ijerph20031861. Cited: in: : PMID: 36767227.
Wang X, Luo J, Wang D, Liu B, Liu C. The efficacy and safety of long-term add-on treatment of azithromycin in asthma: A systematic review and meta-analysis. Medicine. 2019;98:e17190. doi: 10.1097/MD.0000000000017190
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The copyright to the submitted manuscript is held by the Author, who grants the Journal of Medical Science (JMS) a nonexclusive licence to use, reproduce, and distribute the work, including for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.