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ABSTRACT

This review was designed to discuss the rare occurrence of diabetes mellitus (DM) in patients with sickle 
cell anaemia (SCA) with a particular focus on factors, such as life expectancy, body weight, chronic inflam-
mation, insulin resistance, glucose buffering property of haemoglobin, and microRNAs (miRNAs), aiming to 
stimulate research which will fi ll the existing knowledge gaps regarding the interplay between SCA and DM. 
Additionally, possible pharmacotherapeutic approaches to DM were also highlighted in the review. Goog-
le Scholar and PubMed search engines were used to search for the relevant keywords, such as sickle cell 
trait, sickle cell disease, sickle cell anaemia, insulin resistance, and diabetes mellitus. SCA patients appear 
to have β-cell dysfunction with a reduced insulin secretion, but present a similar insulin sensitivity status 
as other patients without haemoglobinopathy. Glucose buffering property of haemoglobin and the possi-
ble DM-protective roles of miRNAs in the sickled erythrocytes constitute some of the potential factors pro-
tecting SCA patients from developing DM. Sickle cell anaemia is associated with several complications and 
endocrinopathies, nevertheless, its coexistence with DM continues to be a rare observation. Proper elucida-
tion of the mechanisms which seemingly confer ‘protection’ against DM in patients with SCA may provide 
some therapeutic insights regarding DM.
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Introduction

Diabetes mellitus (DM) is a group of metabolic dis-
eases with hyperglycaemia as its main feature. 
Generally, DM can be classifi ed into the following 
categories; type 1 DM (T1DM), type 2 DM (T2DM), 
gestational DM (GDM) as well as specifi c types of 
DM due to other causes [1]. Of all the types of DM, 
T2DM constitutes about 90 to 95% with the disease 
estimated to affect over 350 million people in 2030 
[2]. Despite this global epidemic of T2DM, individu-
als with sickle cell anaemia (SCA) seem to present 
some form of protection against the disease [3].

Sickle cell disease (SCD) is a Mendelian 
genetic disease encompassing a wide spec-
trum of disorders [4]. Its most common form is 
the homozygous HbS, referred to as sickle cell 
anaemia (SCA). SCA results from a single nucle-
otide substitution in the DNA of adenine (A) with 
thymine (T) at codon 6 of the beta-globin gene 
on chromosome 11. This substitution causes 
a point mutation, with hydrophobic valine replac-
ing hydrophilic glutamic acid in the polypeptide 
of the beta-globin chain of haemoglobin [5–7]. 

The combination of two normal alpha-globins 
and two mutant beta-globins forms haemoglobin 
S (HbS) which polymerizes upon deoxygenation. 
The monomers aggregate into multiple polymer 
bundles (rod-like structure) which subsequent-
ly lead to red cells deformation from the normal 
biconcave structures into the sickle shape [6].

Generally, SCA is characterized by haemolytic 
anaemia, acute and chronic tissue ischaemia (as 
a result of intermittent occlusion of small ves-
sels) and organ dysfunctions, including endo-
crine dysfunction/metabolic disorders, such as 
osteopenia, hypogonadism, carbohydrate intoler-
ance, and primary hypothyroidism [8–12].

Sickle cell anaemia and diabetes 
mellitus – epidemiology

Despite the established association between SCA 
and endocrine organs dysfunction, the co-exis-
tence of SCA and diabetes mellitus (DM) remains 
rare [3, 13]. Although the number of people with 
type 2 DM and sickle cell trait (SCT), a heterozy-
gous form of sickle cell disease, is increasing [14], 
T2DM rarely develops in individuals with SCA. 
The infrequent concomitance of the two diseas-

es prompts the belief that SCA may have some 
protective effects on the development of DM [15]. 

This protective effect is unexpected as SCA-as-
sociated chronic inflammation [16], defective 
lipid metabolism [17], oxidative stress[18] and 
endocrinopathies[10] resulting from iron over-
load (since blood transfusions are a major form 
of treatment in patients with SCA) are signifi cant 
harbingers of insulin resistance (IR) and T2DM. 

Zhou et al. [19] demonstrated that the preva-
lence of T2DM in SCD patients is comparable to the 
prevalence of T2DM among the African-American 
population in the US. They reported that the unad-
justed prevalence rates of T2DM in SCD popula-
tion of 7,070 adults increased from 9.8% in 2009 to 
11.8% in 2014 resulting in a 0.2% − 0.5% year-to-year 
change; however, when age-and sex-standard-
ized, the prevalence increased from 15.7% in 2009 
to 16.5% in 2014. Furthermore, Skinner et al. [20] 
reported that SCT could increase the risk of devel-
opment of T2DM-related complications, including 
retinopathy, nephropathy and hypertension. 

Although the report of Zhou et al. [19]  indicat-
ed an increasing trend in the prevalence of T2DM 
in SCD patients, no stratifi cation of the glycaemic 
status was observed, based on the type of SCD, 
also referred to as SCA (HbSS), or other milder 
forms of SCD (HbSC, HbSD, HbSE and HbSO). 
Regardless of this report, the numerous avail-
able reports still indicate that the co-existence of 
T2DM and SCA is uncommon [3, 13]

In 1979, a study by Morrison et al. [21] failed 
to detect a single case of DM in 711 patients 
with SCA. In 1987, the co-existence of the two 
diseases was reported in 2 pregnant women 
(GDM in SCA patients) [22]. In fact, in 2006, the 
report from a multi-centre study of Iron Overload 
demonstrated that DM affects only about 2% of 
patients with SCA, and that transfusion duration 
was strongly associated with T2DM [23].

In Nigeria, a survey conducted by Reid et al. 
[24] failed to identify a single patient suffering from 
the two diseases simultaneously. However, in the 
same country in 1990 the fi rst case of SCA and DM 
co-existence was reported [25]. This was followed, 
in the same year, by the report of Adekile and Jeg-
ende [26] which showed the co-existence of type 1 
DM (T1DM) and SCA in a 10-year old child. 

These earlier reports were corroborated by 
a few recent reports documenting the rare co-ex-
istence of the two diseases.[15, 27–29] Recently, 
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Prusty et al. [13]  have reported a prevalence of 
1.46% in 137 patients with SCA. Similarly, Jang et 
al. [3] concluded that chances of developing obe-
sity and diabetes over a lifetime in patients with 
SCD were low. Therefore, the question remains 
whether it can be argued that SCA is protective 
against DM. Nevertheless, addressing this issue is 
currently being investigated through a number of 
factors which have not been well explored to date.

Underestimation of DM 
in SCA patients

Glycated haemoglobin (HbA1c), formed when glu-
cose binds specifi cally to the N-terminal valine 
of the haemoglobin β chain, is widely used in 
the screening, diagnosis and monitoring of DM 
[30]. However, it is well established that HbA1c 
tests are influenced by conditions affecting both 
erythrocytes lifespan and by hemoglobinopathies 
[31, 32]. Thus, discrepancies may occur between 
HbA1c values and the true clinical situations of 
the patients [33].

The reliability of HbA1c test is impaired by 
haemoglobinopathies, as the normal process 
of non-enzymatic glycation of HbA to HbA1c is 
impaired. HbA1c estimation using immunoas-
say and HPLC methods is interfered with by HbS, 
although it can be measured optimally using 
enzymatic assays and capillary electrophoresis 
[33–35]. Alternatively, measurement of non-tra-
ditional glucose control markers (albeit their limi-
tations and poor diagnostic guidelines), such as 
fructosamine, glycated albumin, 1,5-anhydrog-
lucitol, could provide the necessary data [14, 36, 
37]. Therefore, it must be taken into consider-
ation that HbA1c measurement alone (depend-
ing on the methodology), without blood glucose 
estimation, may not be suffi cient for the diagno-
sis of pre-diabetes or diabetes in SCA individuals 
[14, 38]. In fact, the report of Mohamed et al. [15] 
demonstrated that most studies reporting a low 
prevalence of DM in SCA patients did not include 
the abovementioned unreliability of HbA1c tests. 

Life expectancy 

Reduced life expectancy was initially believed to 
account partly for the absence, or low prevalence 

of T2DM, in patients with SCA. This resulted 
from the observation that most patients suffer-
ing from SCA present a shorter life span [39] and 
would not live long enough to develop T2DM the 
risk of which increases with age. This assump-
tion is presently being challenged by the emerg-
ing reports which show that the life span of SCA 
patients with SCA have now have improved. This 
longevity observed in SCA could, in turn, be large-
ly attributed to the treatment advances, such as 
immunization, stroke prevention, chronic blood 
transfusion, as well as healthy lifestyle, strong 
compliance to the treatment regimens, great-
er family support, stem cell transplantation and 
gene therapy [40–42].

Insulin resistance (IR) in patients 
with sickle cell anaemia

Insulin is an anabolic hormone with a number of 
classic and novel biologic effects. Impairment 
in all, or some of the effects mentioned above 
results in IR [43–45]. The complexity of IR is enor-
mous, since it can result from various abnormali-
ties, including defects in insulin receptor and its 
signal proteins [46].

Different attempts have been made to inves-
tigate the relationship between IR and SCD. 
Alsultan et al. [47] reported that the level of an 
IR index, i.e. the homeostasis model assessment 
of insulin resistance (HOMA-IR), was signifi -
cantly elevated in patients with SCA. In contrast, 
the fi ndings included in the report are in opposi-
tion to the earlier report of ter Maaten et al. [48]  
which indicated that the insulin sensitivity status 
in patients with SCA and in the controls was com-
parable. However, our reports [16, 49] and that 
of Yavropoulou et al. [50] corroborate the report 
of ter Maaten et al. [48]  demonstrating that 
patients with SCA have similar insulin sensitivity 
status as controls, but appear to present a β-cell 
dysfunction with a reduced insulin secretion. 
These observations indicate that patients with 
SCA may not be more predisposed to developing 
T2DM, despite the associated chronic inflamma-
tion. Although reasons for this observation are 
still poorly understood, compensatory hemody-
namic state, which is characterized by vasodila-
tion, could account for the comparable insulin 
sensitivity status [48].
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Body weight

In general, overweight and obesity are not com-
monly associated with SCA, as it is more linked 
with stunting and wasting [42]. This is partly due to 
a high resting metabolic demands, reduced intake 
of nutrients, which may result from a reduced 
appetite, recurring illness and hospitalization, as 
well as chronic inflammation [16, 51, 52]. However, 
certain reports have shown that overweight and 
obesity may be present in terms of this disease, 
and are becoming prevalent among children and 
adults suffering from SCA [52–55]. This is believed 
to be related to exercise intolerance, physical inca-
pacity due to sickle cell-related complications, or 
medical conservatism [53]. 

The global epidemic of obesity continues to 
fuel the rising incidence and prevalence of T2DM. 
Although not all individuals with obesity develop 
T2DM, the links between excess body weight and 
T2DM have been well established [56]. The inex-
tricable links involve pro-inflammation, impaired 
fatty acid metabolism and dysfunction of cellu-
lar processes including endoplasmic reticulum 
stress and mitochondrial dysfunction [57].

These complex factors induce insulin resis-
tance and failure of β-cell consistent with exten-
sive metabolic interplay between the hypothala-
mus, adipose tissue, pancreas, liver and the skel-
etal muscles [56, 58–60].

Despite the association between obesity and 
T2DM, new reports are not yet available indicat-
ing that the claimed increase in the incidence 
and prevalence of excess body weight in SCA 
individuals facilitates a rise in the incidence and 
prevalence of T2DM in this group. Therefore, it is 
important to consider whether the mechanisms 
of interaction between obesity and T2DM in peo-
ple with SCA differ from those in people with-
out SCA? This may not be entirely true as SCA is 
characterized by chronic inflammation which is 
also a key factor in the pathogenesis of T2DM. 

Chronic inflammation, 
sickle cell anaemia and 
type 2 diabetes mellitus
Inflammation is a complex physiological 
response of an organism to harmful stimuli, such 
as pathogens and damaged/necrotic tissues in 

order to re-establish homeostasis. It involves the 
synchronization of activities of many cell types 
and mediators the response of which depends on 
the nature of the initial stimulus [61, 62]. Reports 
have shown that an elevation in inflammatory 
markers, such as tumour necrosis factor-alpha 
(TNF-α) and C-reactive protein (CRP), is common-
ly observed in patients with SCA even in steady 
state. Thus, chronic inflammation is considered 
a prominent feature of SCA [15, 51, 63, 64].

The interplay between inflammation and IR/
T2DM has been well recognized [65, 66]. Adipo-
cytes and adipose tissue infi ltrating macrophages 
release a number of pro-inflammatory cytokines 
and chemokines, including as interleukin-6 (IL-6), 
interleukin-1 beta (IL-1β) and TNF-α. These cytok-
ines exert paracrine effects on insulin target cells 
to activate inflammatory pathways resulting in the 
activation of Jun N-terminal kinase (JNK), inhibi-
tor of кB kinase (IKK-β) and other serine kinases. 
In turn, these kinases phosphorylate insulin recep-
tors, insulin receptors substrate-1 (IRS-1) and other 
insulin signalling molecules on serine (rather than 
the normal tyrosine phosphorylation) thereby dis-
rupting the downstream insulin signalling cascades, 
which consequently results in cellular insulin resis-
tance [67, 68]. Although cytokines usually mediate 
IR via local paracrine effects, some studies indicate 
that the tissue cytokines may escape into the cir-
culation and exert endocrine effects by impairing 
insulin sensitivity in the distal tissues [69].

Inflammation induction in patients with SCA is 
principally, not adipocentric. Some factors, such 
as endothelial and coagulation activation, as 
well as oxidative damage in the cell membrane, 
which are induced by the SCA-associated intra-
cellular haemoglobin polymerization, have been 
identifi ed as inflammation inducers [51, 70–72]. 

Although SCA-associated inflammation is not 
adipocyte dependent, the possibility of IR induc-
tion by cytokines which escaped into the circula-
tion (as found in obesity-inflammation-IR inter-
play) suggests that SCA-associated inflamma-
tory mediators could also have some IR inducing 
properties. This issue could even be exacerbated 
by the emerging reports of overweight and obe-
sity in patients with SCA. Surprisingly, SCA-as-
sociated inflammation does not seem to induce 
IR development as obesity-associated inflam-
mation. This conclusion is supported by reports 
demonstrating that IR may not be a common 
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feature in patients with SCA [16, 49, 50]. More-
over, they indicate that there is a need for more 
research which will further investigate the seem-
ingly metabolic-quiescent nature of inflamma-
tion in SCA, which subsequently could become 
a potential pharmacotherapeutic approach.

Abnormal haemoglobin as 
a blood glucose buffer

Abnormal haemoglobins may possess an 
increased blood glucose buffering capacity [73]. 

It was shown in an in vitro study that abnormal 
haemoglobins can serve as glucose buffer, hence, 
averting hyperglycemia, as well as its associated 
complications [74]. This observation is further 
supported by Al Harbi et al. [73]  who demonstrat-
ed that patients with sickle cell trait (SCT) seem to 
be protected against diabetic retinopathy develop-
ment and progression. Furthermore, they showed 
that the SCT group presented a reduced preva-
lence of diabetic macular oedema (DME) and/or 
proliferative diabetic retinopathy (PDR) compared 
with individuals with normal haemoglobin. Addi-
tionally, they also showed that the absence of SCT 
and a longer duration of DM independently pre-
dicted PDR and/or DME compared to hyperten-
sion, nephropathy or diabetes duration.

The possible underlying explanation for this 
apparent glucose-buffering property of abnormal 
Hb is that abnormal Hb may exhibit dissimilar 
biological properties when glucose-bound. Their 
poor stability when glucose-bound, could acti-
vate diverse biological activities which may be 
protective in terms of the development of hyper-
glycaemia and its associated complications [74]. 
Since Hb in SCA is less stable than Hb in SCT, it 
could thus be inferred that Hb in SCA may have 
more glucose-buffering property and this may be 
one of the mechanisms explaining the rare coex-
istence of SCA and DM. Therefore, once it is prop-
erly understood, this novel blood glucose-buffer-
ing property could be further explored as a phar-
macotherapic approach for DM [73].

microRNAs (miRNAs)

miRNAs are 22-nucleotides containing non-cod-
ing RNAs presenting hormone-like activities, as 

well as regulating the activity of host cells. Most 
miRNAs are processed into precursor miRNAs 
and mature miRNAs after the initial transcrip-
tion of DNA sequences into primary miRNAs 
[75]. The inhibition of gene expression by miR-
NAs has been well established. For instance, low 
molecular weight miRNA-induced silencing com-
plex (miRISC) can induce nuclear degradation 
of mRNA by interacting with mRNAs within the 
nucleus [76, 77].

Although data on the mechanisms through 
which sickled erythrocytes offer protection 
against DM is scare, it is speculated that miRNAs 
in the sickled erythrocytes could block mRNA 
translation of the antibodies which results in the 
autoimmune destruction of the pancreas [78]. 
This, in fact, could be a major factor accounting 
for the rare coexistence of SCA and T1DM. 

The DM-protective role of miRNAs in indi-
viduals with abnormal haemoglobin could be 
associated with the protective advantage of SCD 
against malaria. LaMonte et al. [79]  showed 
that the translocation of sickle cell erythrocyte 
microRNAs into plasmodium inhibits ribosomal 
loading, which results in the translational inhi-
bition of parasitic growth proteins resulting in 
impaired growth of Plasmodium falciparum. This 
role of miRNAs in DM protection should also be 
further explored as a pharmacotherapy option 
with regard to DM.

In addition, the beta-globin gene and insu-
lin gene have been mapped to the short arm of 
human chromosome 11 [80]. However, the pos-
sible inhibitory effect between the genetic loci of 
insulin and beta-globin gene is presently poorly 
understood, and thus could be further investigat-
ed in order to gain more insight into the interplay 
between SCD and DM [78].

Conclusion

Sickle cell anaemia is associated with several 
complications and endocrinopathies, although 
its coexistence with DM continues to be rare-
ly observed. This unexpected particular form of 
‘protection’ against DM represents a clinical puz-
zle which requires further scientifi c clarifi cation, 
whereas its understanding might provide some 
therapeutic insights for DM. 
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