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Peritoneal membrane fibrosis 
during dialysis: causes and 
mechanisms
Peritoneal dialysis is an established form of 
the renal replacement therapy in patients with 
end stage renal failure. Development in 1975 by 
Moncrief and Popovich technique of Continuous 
Ambulatory Peritoneal Dialysis was a revolutio-
nary event which strongly contributed to wide 
application of that form of treatment in uremic 
patients [1]. Peritoneal dialysis is cheaper than 
hemodialysis and provides better quality of life 
and results in comparable to hemodialysis survi-
val during first 5 years of treatment [2]. Additio-

nally peritoneal dialysis, better than hemodia-
lysis, preserves residual kidney function what 
may result in lower amount of systemic compli-
cations [3]. Patients treated with peritoneal dia-
lysis have lower risk, than hemodialysis patients, 
of complications after renal transplantation [4]. 
In 2008 about 200,000 and in 2012 approximate-
ly 300,000 patients were treated with peritoneal 
dialysis worldwide [5].

The weak point of peritoneal dialysis is relati-
vely short viability of the peritoneum as the dia-
lysis membrane. Approximately 50% of patients 
treated with chronic peritoneal dialysis for more 
than 6 years develop ultrafiltration failure what 
translates into lower efficiency of removal of 
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water and uremic solutes into the dialysate [6]. 
Two main peritoneal pathologies are observed in 
patients treated with that form of renal replace-
ment therapy: neovascularization of the membra-
ne what causes increased peritoneal permeabi-
lity to osmotic solutes and ultrafiltration failure, 
and fibrosis which results also in ultrafiltration 
failure due to its decreased hydraulic conductivi-
ty and reduced permeability to uremic toxins [7]. 
In the extreme situations peritoneal overgrowth 
of the connective tissue causes encapsulating 
peritoneal sclerosis, which consequence is not 
only ultrafiltration failure but also entrapment of 
intestines in the fibrotic tissue leading to life thre-
atening bowels obstruction [8]. Prevalence of that 
pathology in peritoneal dialysis patients is pro-
portional to length of the renal replacement the-
rapy and in some studies approaches 18.4% [9].

Besides length of therapy the other factors 
predisposing to the morphological changes in 
the peritoneum are diabetes mellitus and uremia, 
however dialysis related factors are much more 
important [10]. Episodes of peritonitis may acce-
lerate progression of the dialysis induced changes 
in the structure and function of the peritoneum 
leading to ultrafiltration failure [11]. However even 
without episodes of peritonitis repeated infusion 
of the dialysis fluid into the peritoneal cavity indu-
ces chronic “sterile” inflammatory reaction which 
contributes both to neovascularization of the peri-
toneum and its fibrosis [12]. Implantation of the 
peritoneal catheter and intraperitoneal infusion 
of the sterile dialysis fluid induce inflammation, 
simply due to mechanical irritation of the perito-
neum [13]. 

One of the most important factor causing 
intraperitoneal inflammation and fibrotic chan-
ges in the peritoneum is low biocompatibility of 
the fluids used during peritoneal dialysis. Bioin-
compatibility of the dialysis solutions is related 
to their low pH, hyperosmolality, high concen-
tration of glucose, presence of glucose degrada-
tion products (GDP) and lactate. Exposure of the 
mesothelial cells in in vitro culture to the acidic 
dialysis fluid which subsequently, to imitate the 
in vivo conditions, was diluted with the effluent 
dialysate from dialyzed patients resulted in their 
stimulation reflected by increased synthesis of 
interleukin 6 [14]. In rats dialyzed during 6 weeks 
with dialysis fluid with neutral pH and low con-
centration of GDP, intraperitoneal inflammation 

was lower than in animals treated with standard 
acidic, high GDP dialysis fluid. Additionally efflu-
ent dialysate collected from the first group of ani-
mals caused weaker in vitro synthesis of collagen 
in mesothelial cells, what was reflected in vivo by 
reduced fibrosis of the peritoneum [15]. 

Glucose is used in the dialysis fluids in the 
unphysiologically high concentrations up to 235 
mmol/L to create osmotic gradient between blo-
odstream and dialysate, necessary for induction 
of the transperitoneal ultrafiltration of fluid. 
However glucose toxic effect towards the perito-
neal mesothelial cells in such scenario depends 
not only on hyperosmolality [16]. Oxidative stress 
in mesothelial cells exposed to high glucose con-
centration induces their senescence [17] apopto-
sis [18] and epithelial to mesenchymal transfor-
mation (EMT) [19]. Mesothelial senescence, apo-
ptosis or mesenchymal transformation may lead 
to progression of the peritoneal fibrosis [20, 21]. 

Molecular mechanisms of EMT of mesothe-
lial cells and peritoneal fibrosis are described in 
various recent publications, but still some details 
are missing. [22]. Mechanisms of these disorders 
are not identical in various pathological proces-
ses and therefore we should not translate directly 
observations from studies on various models of 
fibrosis to the conditions in the peritoneum during 
chronic peritoneal dialysis. Some mechanisms 
causing EMT in various experimental models 
have opposite effect in peritoneal mesothelium. 
For example, Hepatocyte Growth Factor prevents 
EMT in mesothelial cells, whereas has opposite 
effect in hepatocytes [22, 23]. Another example is 
the role of p38MAPK, which induces synthesis of 
inflammatory cytokines potentially favoring pro-
cess of EMT but on the other hand it stimulates 
E-cadherin expression in mesothelial cells, which 
prevents their EMT by modulating the TAK1-
NF‑κB pathway [24].

An important role in EMT of the mesothe-
lial cells during peritoneal dialysis plays TGF‑β1, 
which production in these cells is enhan-
ced in presence of high glucose concentration 
[25]. TGFβ cytokines induce mesothelial EMT 
by Smad-dependent and Smad-independent 
pathways [26]. TGFβ1 downregulates in mesothe-
lial cells BMP-7 signaling, which determines the 
maintenance of the epithelial phenotype of these 
cells [27]. TGFβ1 causes p38 and JNK MAPK acti-
vation pathway due to activation of TAK1, which 



104 Journal of Medical Science 2019;88(2)

is an activator of NF‑κB. Inhibition of NF‑κB in 
mesothelial cells may slow down and even partial-
ly reverse their EMT [28]. Activation of JNK MAPK 
pathway via ligand binding to Toll-like receptor 
that has a cytoplasmic signaling homologous 
to IL‑1, results in activation of NF‑κB and MAPG. 
IL‑1 is a stronger inducer of NF‑κB activation in 
mesothelial cells than TGFβ1 but their effects are 
additive. Inhibition of NF‑κB in mesothelial cells 
from peritoneal dialysis patients prevents their 
EMT after treatment with TGFβ and IL‑1 [29]. The-
se observations prove the role of intraperitoneal 
inflammation during peritoneal dialysis in pro-
gression of the peritoneal fibrosis.

Can we slow down progression of 
peritoneal fibrosis during chronic 
peritoneal dialysis? 
Bioincompatible dialysis fluids and unphysio-
logical procedure of peritoneal dialysis which 
result in constant induction of the intraperitone-
al inflammatory response are the main causes of 
the peritoneal pathology in that group of patients. 
Despite several improvements in the composition 
of the dialysis fluids such as introduction of dia-
lysis solutions with neutral pH, lower GDP con-
centrations, alternative to glucose osmotic solu-
tes, problem of peritoneal damage during chronic 
dialysis still exists. Results from clinical studies 
are conflicting. In long term study performed in 
Netherlands, reduced incidence of peritonitis, 
better transperitoneal ultrafiltration were obser-
ved in patients dialyzed with low GDP and neu-
tral pH solutions, as compared to a group treated 
with standard fluids with high GDP and low pH. 
However no differences were observed between 
the two studied groups in peritoneal transport 
characteristics, or intensity of the intraperitone-
al inflammation [30]. In another study from Korea 
application of a new dialysis fluid with normal pH 
and low GDP level did not affect the peritoneal 
permeability to solutes and water but the authors 
observed reduction in the intensity of the intrape-
ritoneal inflammation [31]. One can say that intro-
duction of new more biocompatible dialysis fluids 
reduced but not eliminated the negative effect of 
peritoneal dialysis on the peritoneal structure and 
function. Problem of the peritoneal damage pro-
bable cannot be totally eliminated because pro-

cedure of peritoneal dialysis based on repeated 
intraperitoneal infusions of the dialysis fluid into 
the peritoneal cavity is not biocompatible per se. 
An interesting study, supporting that statement 
was done by Aoki and colleagues, who con-
structed in vitro model of peritoneal cavity lined 
with mesothelial and endothelial cells. Repeated 
infusion of physiological solutions (ie. Eagles 
medium) or dialysis fluids resulted in inhibition 
of nitric oxide synthase activity both in endothe-
lial and mesothelial cells and EMT of mesothelial 
cells [32]. These results suggest that repeated 
infusion of any solution into the peritoneal cavity 
will trigger EMT of mesothelium. Therefore the-
re is still a big interest in search for mechanisms 
and agents which can reduce the peritoneal inju-
ry during chronic peritoneal dialysis.

Some investigators hypothesized that high 
glucose induced peritoneal fibrosis is linked with 
angiotensin II acting via AT1Rs with subsequent 
activation of the intracellular signaling, such as 
ie. NF‑κB, leading to fibrosis [33] Mesothelial cells 
exposed to high glucose concentration synthesize 
various elements of the renin- angiotensin system 
[34]. In addition to high glucose effect, low pH of 
the dialysis fluid may increase angiotensin recep-
tors expression, what may result in enhancement 
of fibrosis [35] In experimental model of chronic 
peritoneal dialysis in rats use of angiotensin inhi-
bitors valsartan or lisinopril resulted in reduced 
peritoneal fibrosis caused by repeated exposure 
to high glucose dialysis fluid [36].

Recently various treatment leading to 
reduction of peritoneal fibrosis in conditions of 
peritoneal dialysis were proposed. The final tar-
get of these studies was defined as inhibition of 
the dialysis induced peritoneal fibrosis. Yang and 
coworkers found that during 4 months peritoneal 
dialysis performed with high glucose fluid in mice, 
intraperitoneal supplementation of 1,25(OH)2D3 
at weekly intervals, attenuated dialysis induced 
mesothelial apoptosis, EMT and fibrosis of peri-
toneum [37]. In another study Wu and cowor-
kers found increased expression of TGF‑β, EMT 
and autophagy in peritoneal mesothelial cells 
obtained from the effluent dialysate from patients 
treated with chronic peritoneal dialysis. In exper-
iments on mesothelial cells in in vitro culture 
they demonstrated that inhibition of the cellular 
autophagy reduced glucose induced EMT and 
expression of fibrotic markers [38]. Researchers 
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from Italy demonstrated that extract from olive 
leafs blocks in in vitro cultured mesothelial cells 
their TGF‑β induced EMT and expression of cellu-
lar markers of fibrosis [39]. Cheng and coworkers 
demonstrated that hydrogen sulfide inhibits EMT 
of mesothelial cells in in vitro culture and reduced 
peritoneal fibrosis in a rat model of chronic perito-
neal dialysis [40]. Inhibition of heparanase blocks 
glucose induced EMT of the mesothelial cells and 
changes of their monolayers permeability studied 
in in vitro model [41]. Another approach leading 
to prevention of peritoneal fibrosis is use of the 
antioxidants. Wakabayashi and coworkers indu-
ced peritoneal fibrosis in rats with chlorhexidine 
gluconate and simultaneous oral supplemen-
tation with the natural antioxidant astaxanthin 
reduced the peritoneal expression of TGF‑β, snail 
mRNA and type 3 collagen with decrease of the 
peritoneal thickness [42]. Similar observations 
with the another antioxidant selenium come from 
in vitro experiments on human mesothelial cells 
[43]. In another study on rats repeatedly infused 
with the dialysis fluid and endotoxin to indu-
ce peritonitis, inhibition of TAK1‑NF‑κB pathway 
with the PPARβ/δ agonist GW501516 prevented 
peritoneal fibrosis. Additionally in in vitro cultu-
red rat mesothelial cells inhibition of TAK1‑NF‑κB 
pathway reduced glucose induced inflammation 
[44]. Kitamura and coworkers reported protective 
effect against the GDP induced peritoneal fibro-
sis in mice, of a tea polyphenol (-)-epigallocate-
chin gallate which inhibited NF‑κB pathway [45]. 
Washida and coworkers injected male rats with 
chlorhexidine what induced peritoneal thickening 
with the overgrowth of the connective tissue, 
macrophage infiltration and angiogenesis [46]. 
In animals simultaneously treated with Rho-ki-
nase inhibitor fasudil fibrotic changes were sig-
nificantly reduced and the expression of markers 
of tissue fibrosis, such as TGF‑β, fibronectin and 
α‑smooth muscle cell actin was reduced [46].

Presented above studies show the wide ran-
ge of possible approaches aimed at inhibition of 
the dialysis induced peritoneal fibrosis. Howe-
ver most of the results come from acute studies 
or experiments lasting 3–4 weeks and the used 
doses of the tested substances sometimes were 
very high what potentially could induce the nega-
tive side effects [45]. Therefore further studies 
are required to find out/exclude the potential side 
effects of such a long term treatment. It seems 

to be an option to test more than one substan-
ce at the same time to evaluate if due to different 
mechanisms of action they can have synergistic 
effect preventing the peritoneal fibrosis in con-
ditions of peritoneal dialysis. After verification 
of these substances in further in vitro and in vivo 
experiments on animals, their final suitability for 
prevention of the peritoneal fibrosis in patients 
treated with chronic peritoneal dialysis requires 
the clinical studies.

Discovery and inhibitory mecha-
nism of NF‑κB inhibitor DHMEQ

In the course of our search for NF‑κB inhibitors of 
low molecular weight, we designed and synthe-
sized new NF‑κB inhibitors based on the struc-
ture of epoxyquinomicin C (Figure 1). Epoxyqui-
nomicin C was isolated as a weak antibiotic, but 
it showed no toxicity in animals. Although the 
structurally related compounds such as panepo-
xydone [47] and cycloepoxydone [48] were repor-
ted to inhibit NF‑κB, epoxyquinomicin C did not 
inhibit NF‑κB. However, after the removal of the 
protruding hydroxymethyl moiety, the designed 
compound, dehydroxymethylepoxyquinomicin 
(DHMEQ, Figure 1), did inhibit NF‑κB activity [49]. 
We also found that DHMEQ ameliorated inflam-
mation in a collagen-induced rheumatoid arthri-
tis in mice when administered by the IP route [49]. 
In this way, we found a new NF‑κB inhibitor active 
in animal experiment.

Racemic DHMEQ can be synthesized from 
2,5-dimethoxyaniline in 5 steps [50], and can be 
separated into each enantiomer practically by 
lipase [51]. Lipase reacts with racemic dihexa-
noyl-DHMEQ to give (-)-DHMEQ and monohexa-
noyl-(+)-DHMEQ that can be easily removed by 
difference of solubility. (-)-DHMEQ is about 10 
times more effective than (+)-DHMEQ in inhibi-
ting NF‑κB [50]. (‑)‑DHMEQ is mainly used for the 
cellular experiments, and racemic DHMEQ for the 
animal experiments. For the development into 
drugs, racemic DHMEQ is being used.

For the mechanism of DHMEQ, we have firstly 
reported that it inhibits the nuclear translocation 
of NF‑κB [52]. However, later, we have found that 
DHMEQ directly binds to the Rel-family proteins 
to inhibit their DNA-binding activity [53]. Inhibi-
tion of NF‑κB nuclear translocation is likely to be 
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a result after the inhibition of DNA binding [54]. 
Rel family proteins are the constituents of NF‑κB 
molecules including p65, RelB, c-Rel, p50, and 
p52. (-)-DHMEQ was found to bind to p65 cova-
lently with a 1:1 stoichiometry as revealed by sur-
face plasmon resonance (SPR) and MALDI-TOF 
mass spectrum (MS) analyses. MS analysis of 
the chymotrypsin-digested peptide suggested 
the binding of (‑)‑DHMEQ to a specific cysteine 
residue. In the case of p65, DHMEQ only binds to 
the Cys38 residue, which is located close to the 
DNA. The binding is specific, since it does not 
bind to other cysteine residues such as Cys120 
in p65. Observation of the adduct in MALDI-TOF 
MS would indicate that the (-)-DHMEQ-cystei-
ne binding is a covalent one. The formation of 
DHMEQ-cysteine covalent binding in the protein 
was supported by chemical synthesis of the con-
jugate molecule [55]. Since (-)-DHMEQ covalently 
binds to the cysteine residue in an NF‑κB molecu-
le, the inhibitory effect is irreversible. LPS induces 
NF‑κB activation in 30 min in a macrophage‑like 
mouse monocytic leukemia cell line RAW264.7. 
In our experiment, (-)-DHMEQ was added for 
only 15 min and then washed out in this experi-
mental system. Even after 8 h of the removal of 
(-)-DHMEQ, the cells were dormant, and LPS did 
not activate NF‑κB, suggesting that NF‑κB would 
be inhibited irreversibly [56].

All Rel family proteins possess specific cyste-
ine residues essential for their DNA binding. 
(-)-DHMEQ binds to those cysteine residues of 
p65, cRel, RelB, and p50, but not of p52. In case 
of RelB, (-)-DHMEQ inhibits not only DNA-binding 
of RelB, but also its interaction to importin [57]. It 
also induces instability of RelB. Thus, (−)‑DHMEQ 
specifically binds to a cysteine residue in both 
the canonical (p65 and p50) and the noncanoni-
cal (RelB) NF‑κB components [53, 57]. It is likely 
that DHMEQ can enter into a specific pocket via 

a key and lock mechanism to bind to the limited 
cysteine residue.

These mechanisms may explain the highly 
selective NF‑κB inhibition and the low toxic effect 
of DHMEQ in cells and in animals.

Therapeutic activity of DHMEQ in 
animal models of inflammation 
and cancer

DHMEQ has been widely used to study the 
mechanism of diseases, especially to study the 
role of NF‑κB in various disease models in situ 
and in vivo. The most important transcription fac-
tor in osteoclastogenesis is NFATc1. DHMEQ inhi-
bited the expression of NFATc1 in mouse prima-
ry culture macrophages to show the involvement 
of NF‑κB in the mechanism of expression [58]. 
DHMEQ also inhibited the expression of NFATc1 
in mouse rheumatoid arthritis model [59]. Cancer 
stem cell is still a popular topic in cancer rese-
arch. They say it is important to suppress cancer 
stem cell activity to eliminate the cancer growth. 
DHMEQ was used to study the essential factors 
of cancer stem cells. Goto and coworkers demon-
strated that NF‑κB and Akt may be essential for 
the activity of breast cancer cells using DHMEQ 
[60, 61]. Involvement of NF‑κB in the mechanism 
of early phase [62] and late phase [63] of meta-
stasis was suggested by the experiments using 
DHMEQ, which was reviewed in [64].

Not only for the mechanistic study, DHMEQ 
is likely to be useful as new chemothrapeutic 
agent. Recently reported therapeutic activities of 
DHMEQ in animal experiments are shown below.

Firstly, topical application to skin of rodents 
ameliorated atopic dermatitis models. DHMEQ 
ointment showed anti-inflammatory activity in the 
mouse genetic atopic dermatitis model, It sho-
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wed similar or stronger anti-inflammatory acti-
vities compared with betamethasone and tacro-
limus ointments [65]. Accumulation of mast cells 
was inhibited by DHMEQ ointment in this model. 
Later DHMEQ was found to inhibit MMP-2 expres-
sion and cellular invasion of mouse primary cul-
ture mast cells treated with DNP antigen and IgE 
[66]. More recently, DHMEQ ointment was shown 
to suppress development of chemically induced 
atopic dermatitis-like lesions in mice [67, 68]. 
This atopic dermatitis model in BALB/c mice was 
chronically induced by the repetitive and alter-
native application of 2,4-dinitrochlorobenzene 
(DNCB) and oxazolone (OX) on ears, and stratum 
corneum of the ear skin was additionally stripped 
off with surgical tapes before each challenge with 
DNCB/OX. The lesions reaches to peak as well as 
DHMEQ arrives to its efficacy on day 38. The pro-
cedure using adhesive tape in preparation signifi-
cantly accelerated the skin inflammation. Results 
showed that the drug reduced the ear thickness, 
epidermal thickness, mast cell infiltration, and 
gene expressions of interleukin (IL)−4, IL‑13 and 
interferon (IFN)‑γ in ear tissues [68]. Secondly, 
DHMEQ is being developed for anti-inflammatory 
and anticancer therapy by intraperitoneal admini-
stration, which is discussed later

Secondly, intraperitoneal (IP) administra-
tion of DHMEQ ameliorated various inframma-
tory and neoplastic disease models in animal 

experiments. Amniotic apoptosis is essential for 
the onset of delivery. On the other hand, too ear-
ly amniotic apoptosis causes baby loss. Activa-
ted macrophages around the amniotic epithelial 
cells are considered to cause amniotic apopto-
sis producing TNF‑α and NO. The TNF‑α recep-
tor 1 is expressed in the amniotic epithelial cells. 
IP administration of DHMEQ inhibited TNF‑α and 
iNOS expressions in pregnant mice to inhibit 
amniotic apoptosis in this model [69]. 

Recently, it was reported that IP administra-
tion of DHMEQ ameliorates dinitrobenzene sul-
fonic acid (DNBA)-induced colitis in rats [70]. IP 
administration of DHMEQ also inhibited dextran-
-sulfate-sodium-induced colitis in rats [71].

DHMEQ inhibits cancer progression in various 
animal models. IP administration of DHMEQ inhi-
bited the growth of hormone-insensitive prostate 
carcinoma [72] and breast carcinoma [73]. It also 
inhibited thyroid carcinoma [74], regional model of 
glioma [75], and various lymphomas including adult 
T-cell leukemia [76], and multiple myeloma [77].

Fluke-induced cholangiocarcinoma is still 
common in Thailand, and it is one of the most 
difficult cancers to treat, and there is no effective 
chemotherapeutic regimen at present. Seubwai 
and coworkers reported that IP administration 
of DHMEQ inhibited the growth of cholangiocar-
cinoma in mice [78]. Normal bile duct epithelia 
rarely expressed NF‑κB subunits such as p50, 

 

 

 

Figure 2. Anti-inflammatory and anticancer activities of DHMEQ in animal experiments. 

DHMEQ was all administered by intraperitoneal route. 
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p52 and p65, whereas all cholangiocarcino-
ma patient tissues over‑expressed these NF‑κB 
subunits. DHMEQ increased apoptosis by decre-
asing the expressions of anti-apoptotic proteins 
such as Bcl-2 and XIAP in cultured cholangiocar-
cinoma cells. Moreover, DHMEQ effectively redu-
ced tumor size in cholangiocarcinoma-inocula-
ted mice.

Recently, Ito and coworkers investigated the 
anticancer effect of DHMEQ in CDDP-resistant 
bladder cancer cells [79]. Invasive bladder carci-
noma cell line T24 and its CDDP-resistant cell line 
T24PR were used. The NF‑κB activity was stron-
ger in T24PR cells than in T24 cells. DHMEQ alo-
ne effectively lowered cell viability and induced 
apoptosis in T24PR cells. Moreover, using mou-
se xenograft models, the mean volume of tumors 
treated with the combination of DHMEQ and pac-
litaxel was significantly smaller than those trea-
ted with paclitaxel alone. Thus, IP administration 
of DHMEQ showed anticancer activity alone, and 
also increased the sensitivity to paclitaxel.

Anti-inflammatory and anticancer activities 
of DHMEQ in animal models are summarized in 
Figure 2, where DHMEQ was given to animals by 
IP injection in all cases. 

Possible application of DHMEQ for 
the prevention and and treatment 
of peritoneal fibrosis
Thus, IP administration of DHMEQ is quite effec-
tive to suppress various inflammattory and neo-
plastic disease models in animals. No toxicity has 
been reported so far. For the mechanism of anti-
-inflammatory and anticancer activity, it is likely 

that DHMEQ acts only in the peritoneal cavity [80, 
81], because it is easily metabolized in the blood. 
Because DHMEQ does not enter systemic circu-
lation, IP administration of DHMEQ is considered 
to be a safe therapy.

Recently, we have demonstrated that DHMEQ 
inhibits primary cultured human peritoneal cells 
[82]. We studied the effects of DHMEQ on the 
functions of human peritoneal mesothelial cells 
(HPMC) in situ. DHMEQ was not toxic at 1–10 
μg/ml to HPMC. Synthesis of IL‑6, MCP‑1 and 
hyaluronan in unstimulated and stimulated with 
interleukin‑1 was measured. DHMEQ at 10 μg/ml 
reduced in unstimulated and stimulated HPMC 
synthesis of IL-6, MCP-1 and hyaluronan (Figu-
re 3). The observed effects should be due to the 
suppression of gene expression responsible for 
the synthesis of these molecules. DHMEQ also 
modified the effects of the effluent dialysates 
from continuous ambulatory peritoneal dialysis 
(CAPD) patients on the function of HMPC. In the 
presence of dialysate, DHMEQ inhibited the colla-
gensynthesis by HMPC. These results show that 
DHMEQ effectively reduces inflammatory respon-
se in HMPC and prevents dialysate-induced pro-
liferation and collagen synthesis in these cells. 
Therefore, IP administration of DHMEQ would be 
useful for the prevention of progressive dialysis-
-induced damage to the peritoneum.
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Figure 3. Inhibition of inflammatory cytokine, hyaluronan, and collagen synthesis by DHMEQ 

in human primary culture peritoneal cells. Human peritoneal mesothelial cells (HMPC) were 

supplied by the patients with continuous ambulatory peritoneal dialysis (CAPD). 
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