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Introduction
Non‑syndromic orofacial clefts (OFC) and tooth agene‑
sis (TA) are two of the most common craniofacial birth 
defects [1, 2]. OFC affect 1 per 700 live births in the 
global population [1]. According to the Polish Regis-
try of Congenital Malformations, the prevalence 
of orofacial clefts in Poland ranges from 1/500 to 
1/1000 births [www.rejestrwad.pl]. OFC are divided 
into two main forms: non‑syndromic cleft lip with or 
without cleft palate and cleft palate only [3]. The inci‑
dence of TA, excluding the lack of the third molars, var‑
ies from 1.6 to 9.6% depending on ethnic background 
[2]. TA can be classified based on the number of miss‑
ing teeth into hypodontia (the lack of one to five teeth), 
oligodontia (the lack of 6 or more teeth) and anodontia 
(the complete absence of teeth). In this classification, 
the third molars are not taken into account since their 
absence is highly prevalent [2]. The co‑occurrence of 
OFC and TA is often reported [4, 5]. Patients with OFC 
have an increased risk of dental anomalies, including 

alteration in tooth number, size, shape, a timing of for‑
mation and eruption comparing to the general popu‑
lation [6]. It has been shown that dental anomalies 
appear primarily in the cleft area and their prevalence 
is higher in left‑sided OFC [7]. Additionally, in patients 
with OFC the agenesis of teeth outside the cleft area 
have also been reported to be more frequent [8]. 
This observation may indicate that the same molec‑
ular mechanisms may be shared in the development of 
the teeth, palate, and lip [8]. 

The etiology of non‑syndromic OFC and TA is com‑
plex with genetic and environmental components [3, 
9]. Additionally, the epigenetic modifications have been 
implicated in the pathogenesis of these structural 
malformations [10]. Genetic studies using a variety of 
research approaches, including linkage studies, can‑
didate gene analyses, and genome‑wide association 
studies, have identified a number of genes and chro‑
mosomal regions underlying these craniofacial anom‑
alies [9, 11]. However, nucleotide variants of identified 
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candidate genes and chromosomal loci can still explain 
only a fraction of the predicted heritability. It has been 
demonstrated that both OFC and TA have a number of 
common candidate genes, which nucleotide variants 
can influence their risk [4, 5]. 

Across OFC’ studies conducted in various popula‑
tions, including the Polish population, the most consist‑
ent results were observed for nucleotide variants locat‑
ed in the IRF6 gene (OMIM *607199) and the chromo‑
somal region 8q24.21 [12–14]. The IRF6 gene encodes 
a transcription factor, which is involved in the regula‑
tion of the keratinocyte proliferation‑differentiation 
switch and formation of oral periderm [15]. It is worth 
noting that in a study conducted in the Latvian popula‑
tion, the IRF6 variant (rs642961) located in the promot‑
er region was found to be more frequent in individuals 
presenting OFC associated with tooth agenesis when 
compared to healthy individuals [16]. Moreover, Vieira 
et al. have demonstrated that this functional variant, 
disrupting an AP‑2α binding site in the IRF6 enhancer, 
is associated with the risk of isolated TA [12, 17, 18]. The 
8q24.21 risk locus, identified by the first genome‑wide 
association study conducted for OFC and further con‑
firmed by a number of post‑GWAS replication stud‑
ies, is a gene‑poor region devoid of protein‑coding 
genes [19, 20]. Studies using mice as model organisms 
have demonstrated that this chromosomal locus con‑
tains very distant cis‑acting enhancers controlling the 
expression of the Myc gene during craniofacial devel‑
opment [21]. Mice homozygous for the deletion includ‑
ing this medionasal enhancer region show mild altera‑
tions in the face morphology and occasionally cleft 
lip and palate [21]. Within the 8q24.21 chromosomal 
region, which nowadays is considered as a key sus‑
ceptibility locus for non‑syndromic OFC, the top mark‑
er associated with the risk of this anomaly is rs987525 
[19]. A significant association between this intragenic 
variant and the co‑occurrence of OFC and TA outside 
the cleft region was also observed [22]. 

The major candidate genes for non‑syndromic 
TA include WNT10A (OMIM *606268), MSX1 (OMIM 
*142983), PAX9 (OMIM *167416), AXIN2 (OMIM *604025), 
EDA (OMIM *300451) and EDAR (OMIM *604095). Van 
den Boogaard et al. [23] have demonstrated that the 
WNT10A mutations are present in more than 50% iso‑
lated TA cases. Pathogenic mutations within the cod‑
ing region of WNT10A have also been identified in 62% 
of tooth agenesis patients from the Polish population 
[24]. The WNT10A gene is a member of the Wnt fam‑
ily, which consists of genes encoding secreted sign‑
aling proteins involved in a number of developmental 

processes during embryogenesis [25]. Interestingly, 
the missense mutation of the WNT10A gene has been 
associated with the increased risk of non‑syndromic 
OFC in the Chinese population [26]. Moreover, nucle‑nucle‑
otide variants in WNT3 (OMIM *165330), WNT3A (OMIM 
*606359), WNT5A (OMIM *164975), WNT9A (OMIM 
*602863), and WNT11 (OMIM *603699) have been 
found to be significantly associated with non‑syn‑
dromic orofacial clefts in various populations [27, 28]. 
Similarly, polymorphisms and mutations in the MSX1 
gene are known factors increasing the risk of non‑syn‑
dromic OFC [29]. In addition, MSX1 and two other major 
TA candidate genes, PAX9 and AXIN2, have been asso‑
ciated with the co‑occurrence of cleft anomalies and 
TA [5]. The MSX1 and PAX9 genes encode transcription 
factors that play an essential role during embryogen‑
esis [9]. It has been demonstrated that these genes are 
co‑expressed during craniofacial development, and 
the genetic interactions between their protein products 
are involved in the regulation of the lip formation and 
tooth morphogenesis [30]. Msx1 and Pax9 deficient 
mice lack all teeth, which development is arrested at 
the bud stage, and exhibit a number of craniofacial 
defects, including cleft palate [31, 32]. The AXIN2 gene 
encodes a protein which is a negative regulator of the 
Wnt‑signalling pathway [33].

Besides the genes described above, there are 
a number of other candidate genes and chromosomal 
loci underlying the co‑occurrence of OFC and TA. The 
systemic review conducted by Phan et al. [5] revealed 
that they include among others the TGF pathway 
genes and the cancer predisposing gene CDH1 (OMIM 
*192090).

In summary, OFC and TA are one of the most com‑
mon craniofacial anomalies that share a number of 
common candidate genes. There is growing evi‑
dence suggesting that tooth agenesis should be 
considered as an extended phenotype for oral 
clefts [34]. 
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