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Introduction
The subset of suppressor T cells loomed from the work 
of Gerdhon and Kondo in the early 1970s. Although not 
that widely noted the existence of T cells with suppres‑
sive function was also suggested by Nishizuka and 
Sakakura [1, 2].

This distinct T‑cell population was originally char‑
acterized in mice, representing 5–10% of peripheral 
CD4+ T cells.

In humans, Treg cell population is a small subset of 
CD4+ T lymphocytes (about 5%), with the expression of 
high‑intensity CD25 (CD25high) and they control immu‑
nity by interfering with the generation of effector func‑
tion in vivo [3, 4].

Immunophenotype
Treg population is heterogeneous and markers for spe‑
cific subtypes are now the major objective.

nTreg lymphocytes were identified as CD4+ T cells 
expressing high levels of IL‑2Rα (CD25), along with low 
expression of the IL‑7Ra chain (CD127) and a unique 
transcription factor FoxP3, which acts as a master reg‑
ulator gene for inducing Treg phenotype and lineage [5].

Treg cells express several molecules such as 
CTLA‑4, CD122, GITR, Galectin 10, LAP, ICOS, PD‑1 and 
GARP and Toll‑like receptors [6, 7].

Treg cells show elevated levels of adhesion mole‑
cules such as CD11a, CD44, CD54, and CD103 [7, 8].

There is some evidence suggesting that Treg cells 
might also exhibit a characteristic chemokine receptor 
profile: CXCR3, CXCR4, CCR4, CCR3, CCR5, CCR6 and 
CCR8 [7, 9, 10].

Others Tregs markers are LAG‑3, an MHC class II 
binding CD4 homologue and neutropilin (Nrp1), which 
is involved in axon guidance, angiogenesis and T lym‑
phocyte activation [11].

A relatively new marker HELIOS, from the Ikaros 
family transcription factors, defines Treg subsets with 
distinct phenotypic and functional characteristics [12].

It has been recently reported that nTregs express 
CD39 and CD73 antigens. Expression of CD39 and 
CD73 on Tregs was first described by Borsellino et al. 
and Deaglio et al. in 2007 [6, 12].

The FoxP3 gene was identified in 2001 as the dis‑
ease – causative in Scurfy mice, which spontaneously 
develop severe autoimmunity/inflammation as a result 
of a single gene mutation on the X chromosome [11, 13].

FoxP3 seems to activate or repress hundreds of 
genes directly or indirectly through forming a tran‑
scription complex with other key transcription factors 
such as NFAT [14].

FoxP3 probably controls cell‑contact dependent 
inhibition of the activation and proliferation of T cells, 
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killing or inactivating APC and/or T cells, and/or via 
suppression of cytokines such as IL‑10 and TGF‑β 
[14–16].

Mechanism of action and role of Tregs
Presently, a role of Tregs is not restricted to main‑
taining self‑tolerance. Tregs are believed to regulate 
immune response against self‑antigens, infectious 
agents, tumor antigens and transplantation antigens.

Tregs maintain immunological tolerance by inhib‑
iting helper T cell, cytotoxic T lymphocytes, dendritic 
cells, and NK cells function [17–19].

Tregs can secrete blocking cytokines like IL‑10, 
TGF‑β, IL‑35 and use them as the main immunosup‑
pression inducing factors [20].

Tregs can also use the cytotoxicity involving per‑
forin and granzyme as a mechanism of suppression. 
It has been proven that human Tregs activated by 
anti‑CD3 and CD46 express granzyme A and B and can 
kill their own immune cells. Killing involving Tregs is 
perforin‑dependent and FasL‑independent [20].

Tregs may also limit the immune response by 
affecting the APCs. In studies involving Treg, Tef and 
DC interactions in lymph nodes using intravital micro‑
scopy, it has been shown that Tregs are capable of 
direct interaction with antigen‑binding dendritic cells. 
Contact between Tregs and DC can lead to Tef activa‑
tion blocking [20].

Tregs in pregnancy
Tregs induced during pregnancy are involved in immune 
tolerance induction of mother organism on fetus. On 
the periphery a double increase in the number of Tregs 
in pregnancy is observed, and the maximum number 
of these cells falls on the period from the second tri‑
mester and lasts for 6–8 weeks after birth. In women 
with recurrent, spontaneous miscarriages, the number 
of Tregs drops suddenly in both decidua as well as in 
peripheral blood compared with women whose preg‑
nancy is proceeding correctly [21, 22].

Autoimmunity
The Treg function impairment can lead to the develop‑
ment of autoimmune diseases.

In humans, the quantitative and qualitative disor‑
ders of Treg populations is said to be one of the cours‑
es of this type of diseases [17].

For instance, in both newly diagnosed and chronic 
type I diabetes patients a reduced percentage of Tregs 
has been stated. In addition, these cells less inhibited 
T cell proliferation in vitro [23–25].

Treg cells in rheumatoid arthritis patients were 
in anergy, inhibited the proliferation of effector cells, 
but did not inhibit the secretion of inflammatory 
cytokines by effector lymphocytes and monocytes. In 
patients with multiple sclerosis, there was no decrease 
of CD4+CD25highFoxP3+ cells, however the ability to 
inhibit the effector lymphocyte proliferation, and their 
cytokine secretion was reduced, compared to the con‑
trol group [26, 27].

Neoplasms
Numerous studies show connection of T regulatory 
cells with the induction of tolerance to cancer. Cancer 
antigens derived from the host and many cancer‑as‑
sociated antigens are also self‑antigens, which Treg 
cells recognize as their own and promote tolerance. 
Tregs are also capable of inducing suppression of NK 
cells, which control tumor growth in vivo. It has been 
found that the regulatory T‑lymphocytes can induce 
suppression of both innate and adaptive immune 
response [28–30].

An increased number of Tregs in the circulation of 
patients with different types of cancer has been shown 
(including lung, breast, ovarian, colorectal, esopha‑
geal, renal and gastric cancer, as well as hepatocel‑
lular carcinomas, leukemias, lymphomas and melano‑
mas). The increased infiltration of Tregs in tumors and 
neoplastic exudates is associated with poor prognosis 
in multiple cancers. It is known that infiltration of CD8+ 
cells is a preferred prognostic factor, but increased 
ratio of Tregs to CD8 + cells is a negative factor. It 
seems that the relationship between Tregs and effec‑
tor cells in the cancer microenvironment creates the 
balance between immunity and tolerance. As a result 
cancer could reduce the immune response by promot‑
ing the recruitment, expansion and activation of Tregs 
[28–32].

Conclusion
Tregs regulatory functions are critically important for 
maintaining balanced immune responses. In healthy 
individuals, this balance is controlled by nTregs. In 
patients with cancer and viral infections, the rules for 
nTregs are changed. In recent years there has been 
tremendous progress in understanding the function 
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of Tregs in cancer, autoimmunity, graft rejection and 
other reactions depending on immune response. These 
interdependencies, however, require further clarifica‑
tion.
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