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ABSTRACT

Aim. To classify motor unit action potential patterns using a deep learning technique with high accuracy.
Material and methods. A dataset was compiled from three main groups of motor unit action potential pat-
terns, including myopathy, neuropathy, and normal, as assessed by a clinical neurophysiologist during rou-
tine clinical assessments. After preprocessing the raw signals in the dataset, a total of 3,152 signal seg-
ments from 96 muscles of 26 individuals were divided into training and test sets. Deep learning network
models were developed in Python using the Keras APl in Jupyter Notebook.

Results. Among the deep learning models, a hybrid deep neural network model with a one-dimensional con-
volution layer as an input layer and four layers of gate recurrent units (IDCNN-GRU) achieved the highest
accuracy rates. Ten-fold cross-validation resulted in a mean accuracy rate of 98.13 + 1.05%.

Conclusions. Both conventional machine learning models and deep learning models could classify needle EMG
patterns that belonged to three neuromuscular disorder groups with high accuracy. However, more clinical
studies with larger datasets are needed for validation. In contrast to conventional machine learning techniques,
deep learning models could receive signals as input data and automatically extract the required features.
Therefore, they could facilitate the real-time implementation of the pattern recognition tasks in the future.

Introduction
Assessing audio-visually, needle electromyogra-

phy (EMG) is a crucial diagnostic tool used to dif-
ferentiate between the three main types of neu-
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romuscular conditions: healthy, neuropathic, or
myopathic [1]. During needle EMG procedures,
potentials originating from needle insertion into
a muscle, muscle cell membrane potentials while
resting, and motor unit action potentials during



muscle contraction are recorded [2,3]. Although
there are many experienced electromyographers
or neurophysiologists, needle EMG examinations
are still highly subjective, and, in some cases,
reaching a consensus for certain kinds of pat-
terns is unlikely [1,4]. Machine learning methods,
intensive learning, have the potential to enhance
standardisation in pattern recognition and may
offer valuable diagnostic support to less experi-
enced electromyographers in the future [5].

Machine learning methods have been exten-
sively applied in recent clinical research to
address challenges related to classification,
decision-making, and prognosis prediction with-
in clinical practice. [5,6]. As a subtype of artificial
intelligence, machine learning has yielded prom-
ising results in biomedical image and signal pro-
cessing studies, paving the way for the develop-
ment of clinical decision support systems [7]. Var-
ious machine learning techniques are available
for use in medical studies, which can be grouped
into classic or conventional machine learning
and deep learning techniques based on the data
processing steps [5,8]. Traditional machine learn-
ing techniques share standard pipelines for pro-
cessing image or time series data. After prepro-
cessing data, quantitative analysis is applied to
extract features. The best meaningful features for
classification are then required to be chosen as
the input data for a machine learning tool, such
as a decision tree, support vector machine, logis-
tic regression, or a small-scale artificial neural
network, such as a multi-layer perceptron [6,9].
Although conventional machine learning tech-
niques have hand-crafted feature extraction and
selection steps in their data processing pipeline,
deep learning techniques such as convolutional
neural networks (CNN), recurrent neural networks
(RNN), autoencoders, long-short term memories
(LSTM), and gate recurrent units (GRU) can auto-
matically achieve these processing steps. There-
fore, the image or signal presented in a time-se-
ries format can be provided as input data to the
classification pipeline of an artificial neural net-
work [1, 5, 8]. Direct use of signal data as input
may streamline the automation process and
enhance decision-making capabilities, enabling
real-time implementation.

Despite several conventional machine learn-
ing studies showing promising results for classi-

fying needle EMG signals, studies that implement
deep learning for needle EMG signal classifica-
tion are scarce [1,8]. Few studies have focused
on classifying resting state membrane poten-
tials [1]. Nodera et al. [10] classified resting-state
potentials with 86% accuracy using Mel spectro-
grams as input data, and pre-trained models of
convolutional neural networks for image recog-
nition were employed. The accuracy reached up
to 94% in the 19-layered Visual Geometry Group
(VGG-19), a convolutional neural network model
with 19 weighted layers, by using data augmenta-
tion techniques. Nam et al. [11] classified resting
state potentials using Inception-v4 as a convolu-
tional neural network, yielding results with 93%
accuracy. The input data consisted of image files
with .png extensions representing the resting
state potentials. There are also a few studies with
encouraging results that aim to classify motor
unit action potentials during muscle contraction
using deep learning techniques [1]. Sengur et al.
[12] used a continuous wavelet transform (CWT)
spectrogram and Pseudowigner-Wille distribu-
tion function for preprocessing. Two-dimension-
al spectrograms were used as input data for the
two-dimensional convolutional neural network
(2D-CNN) pipeline, which achieved 96.8% accura-
cy in classifying two groups: Amyotrophic Lateral
Sclerosis (ALS) and normal. Yoo et al. [8] utilised
NEMGnet, a one-dimensional residual convolu-
tional neural network inspired by the Residual
Neural Network (ResNet) and the Visual Geometry
Group (VGG) neural network, for the classification
of EMG segments, achieving 62.35 + 4.60% accu-
racy in classifying normal, neurogenic, and myo-
genic segments. Then, the divide-and-vote algo-
rithm was used to determine the disease labelling
for each muscle and patient with 83% accuracy.

An RNN is a specialised form of deep neu-
ral network particularly well-suited for handling
sequential data, such as time series [13]. They are
mainly used to predict the following likely data.
However, classifying signals or time series could
also be possible by arranging the architecture
[14]. LSTM and GRU are subtypes of RNNs that
yield successful results in surface EMG studies
[15, 16]. Our study aims to classify nEMG data with
motor unit action potentials into three categories,
standard, neuropathy, and myopathy, using deep
learning techniques with high accuracy.
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Material and methods

Data acquisition

We included EMG traces acquired using concen-
tric needle EMG recordings on a Natus Neurol-
ogy Nicolet EMG system with an AT2+6 amplifi-
er in this study. We retrospectively reviewed the
recorded needle EMG signals obtained in routine
clinical practice from December 2022 to June
2023, together with the EMG reports of clinical
neurophysiologists. We received a total of 155
EMG signal traces corresponding to 134 muscles
in 33 patients. We applied labelling at the patient
and muscle levels according to the EMG reports in
the archive. We excluded cranio-bulbar muscles
due to the shorter duration and smaller amplitude
of motor unit action potentials compared with
limb muscles [3,17]. Among 33 subjects, 15 were
normal, 11 had pathologies causing neurogenic
motor unit action potentials, and seven had myo-
pathies with myogenic action potentials. Among
the 15 normal subjects, we excluded one subject
due to an increased percentage of polyphasic

motor unit action potential findings and another
two subjects because the study was performed
only on cranio-bulbar muscles. In the neurogenic
group, we excluded one patient because the study
focused only on cranio-bulbar muscles, and two
patients due to being in the acute to subacute
phase of neuropathy, as no changes in motor unit
action potential morphology related to reinnerva-
tion were observed. We also excluded muscles
that did not represent labelled patterns.

Finally, we included EMG traces of 29 mus-
cles from seven individuals with myopathy, 24
muscles from eight individuals with neuropathy,
and 43 muscles from 11 normal individuals in the
study. Detailed information about the subjects is
presented in Table TA-1E. The recording parame-
ters included a 30-50 Hz high-pass filter, a 10 kHz
low-pass filter, and a sampling rate of 48,000 per
second. We extracted EMG data from the Synerqy
software system in .txt format. We reformatted
the .txt files for use with a program developed in
WinForms Visual Studio C++ to review traces in
100-msec sweep times. We also used this pro-

Table 1A. Demographics of the cases according to records.

Demographics Female Male Total Age (Mean/Median/Range)
Myogenic 2 5 7 52.8/56/21-80
Neurogenic 2 6 8 52.6/52.5/38-72
Normal 5 6 1 45.4/54/12-76
Total 9 17 26 49.6/53.5/12-80

Table 1B. Sampled muscle records from the upper limb and shoulder

Muscles sampled PM Is Ss B D BB EDC FDS FCU FDI ADM  APB
Myogenic 4 = 2 = 4 5 4 = - 1 - =
Neurogenic - - 1 - 2 - - - 1 1 1 2
Normal 1 1 1 1 6 5 2 1 1 5 - 1
Total 5 1 4 1 12 10 1 2 7 1 3

PM = Pectoralis major, Ss = Supraspinatus, Is = Infraspinatus, Triceps Brachi = TB, D = Deltoid, BB = biceps brachi, EDC = Extensor digitorum
Communis, FDS = Flexor Digitorum Superficialis, FCU = Flexor Carpi Ulnaris, FDI = First Dorsal interosseus, ADM = Abductor Digiti Minimi,

APB = Abductor Pollicis Brevis

Table 1C. Sampled muscle records from the lower limb and hip.

Muscles sampled Ip GIMax  GIMed TFL RF VM AM TA GeM TP EHL
Myogenic 7 - - - 1 1 - - - - -
Neurogenic - 2 2 1 - 1 1 5 2 1 1
Normal 1 - - - 1 4 - 5 6 1 -
Total 8 2 2 1 2 6 1 10 8 2 1

Ip = lliopsoas, RF = Rectus Femoris, VM = Vastus Medialis, AM = Adductor Magnus, TA = Tibialis Anterior, GcM = Gastrocnemius Medialis, TP
= Tibialis Posterior, EHL = Extensor Hallucis Longus, TFL = Tensor Fascia Lata, GIMax = Gluteus Maximus, GIMed = Gluteus Medius
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Table 1D. Number of neurogenic conditions diagnosed.

Neurogenic Pathologies
Chronic L5-S1 radiculopathy
Subacute-Chronic L4-L5 radiculopathy
Chronic L4-L5 radiculopathy
Chronic L3-L4, L4-L5 radiculopathy
Chronic C5-C6 radiculopathy
Chronic median nerve injury
Chronic lower truncus injury

—_ =, NN = ===

Table 1E. Number of myogenic conditions diagnosed.

Myogenic Pathologies

Myopathy alone

Myopathy with fibrillations

Myopathy with myotonia

—_—|— o=

gram for preprocessing and labelling. The study
received approval from the ethics committee of
Karadeniz Technical University.

Preprocessing

We down-sampled raw needle EMG signals to
9600 Hz to reduce computational complexity.
For the down-sampling procedure, we used an
algorithm that calculates the second derivative
of each signal. The signal with the lowest second
derivative value was chosen as the representa-
tive signal for each of the five consecutive signals
in the trace. As a result, the local minimums and
maximums of high-frequency patterns — con-
taining details regarding small motor unit action
potentials, turns, and phases, which are essential
characteristics of myopathy — were retained dur-
ing the down-sampling process (see Figure 1).
We also filtered the signal traces using a 50-Hz
high-pass filter to remove redundant low-fre-
quency information digitally. Each nEMG data
sample recorded from the labelled muscle has
traces that are 4 to 20 seconds long. Two neuro-
physiologists (IT and CB) reviewed all nEMG trac-
es and selected segments for labelling that were
artefact-free and at least 0.5 seconds long. We
sliced the extracted traces into 100-msec seg-
ments with 50-msec overlap. Following process-
ing, the neurophysiologists conducted a thorough
review of each signal segment. They removed any
traces from the dataset that did not contain char-
acteristic features of the designated neuromus-

cular disorder group. We also excluded the traces
with far-field potentials. Most of the signal seg-
ments had 945-960 consecutive signal series. We
determined the standard signal vector length to
be 940 to ensure a consistent size for each signal
segment. Eight signal segments, three of them
belonging to the normal group, and five belong-
ing to the neurogenic group, required zero pad-
ding at the end as a result of being shorter than
940. Finally, we selected 1221 normal, 718 neuro-
genic, and 1212 myogenic EMG signal segments
as the training and test sets. Thus, we generated
a dataset consisting of 3,152 signal rows with 940
columns.

Deep Learning Network Model and Training

We performed deep learning using Python 3.7.16
in Jupyter Notebook. We designed deep neural
networks using LSTM, GRU, and CNN in various
architectures with the Keras library and a Ten-
sorFlow 2.6.0 backend in Python. We utilised the
classification model to categorise EMG signal
segments into three groups: neurogenic, myo-
genic, and normal. Therefore, the output layer
consisted of three neurons, representing three
neuromuscular disease groups according to the
one-against-all principle. Preprocessed EMG
signal segments, recorded as a CSV table, were
provided as input data. Initially, we used 80% of
labelled signal segments as the training set and
the remainder as the test set. Then, avoiding
overfitting, we also applied ten-fold cross-valida-
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Figure 1. We down-sampled the signal segments to 9600 Hz to reduce computational complexity. However, during the down-sam-
pling procedure, high-frequency information could be missed, which is particularly relevant for the recognition of myopathy forms.
Each trace segment contains 100-msec-long signals. The raw trace, the first trace, contains high-frequency details that may be over-
looked by traditional down-sampling methods, such as average pooling, which is seen in the second trace. By computing the second
derivative at each signal point, peaks can be identified and selected as representative points during downsampling, as shown in the
third trace. This approach enables greater preservation of high-frequency information compared with conventional techniques.

tion with randomly chosen training and test sets
to assess the performance of the models. We
performed the training and testing procedure on
a CUDA-enabled NVIDIA GPU (GeForce RTX 3060)
running on the Windows 11 operating system.

Statistics

We performed the statistics using the R Studio
software package, version 4.4.1. For continuous
variables, we conducted the Shapiro-Wilk test to
check the normality of data distribution. We used
Student’s t-test for normally distributed continu-
ous variables and the Mann-Whitney U test for
non-normally distributed continuous variables
to evaluate the differences between the groups.
Statistical significance was considered signifi-
cant if p < 0.05.

Results

We tested various deep learning architectures
and optimised the best-performing models using
the grid search algorithm. Finally, we obtained the
mean accuracy rates of the ten-fold cross-vali-
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dation results and assessed the models through
statistical analysis.

We developed two main models. One was
a residual convolutional network, similar to nEM-
Gnet from Yoo et al.,, and the other was a multi-
layer RNN model that utilised either a unidirec-
tional or bidirectional GRU or LSTM. We achieved
the highest mean accuracy rate (98.13 + 1.05%)
using ten-fold cross-validation when testing the
model 1D-CNN+4-layer-unidirectional GRU with-
out max pooling. Statistical analysis revealed
that the accuracy rate of the model 1D-CNN+4-
layer-unidirectional GRU without maxpooling was
significantly higher than 5-layer CNN (p = 0.024),
11-layer CNN without residual layers (p = 0.005),
4-layer unidirectional LSTM (p < 0.001), 4-lay-
er-bidirectional-LSTM (p < 0.001), 4-layer-unidi-
rectional GRU (p = 0.012), 3-layer-1D-CNN+2-lay-
er-unidirectional GRU (p = 0.028), 1-layer CNN-2-
layer-unidirectional GRU (p = 0.003), 2-layer CNN-
1-layer-bidirectional GRU (p = 0.01), and 2-layer
CNN-1-layer-unidirectional LSTM (p < 0.001). We
summarised all results obtained with ten-fold
cross-validation on the dataset, which was split
randomly into a train set and a test set, and the



p-values for the models compared to 1-layer-1- matrix of the ten-fold cross-validation results,

D-CNN+4-layer-unidirectional GRU are present- along with the mean and standard deviation, in
ed in Table 2. For the best-performing model, Figure 2. The mean and standard deviation of
1D-CNN+4-layer-unidirectional GRU without max precision, recall, and F1 scores are also present-
pooling, we present the normalised confusion ed in Table 3. The pipeline and the detailed archi-
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Figure 2. Confusion matrix of the optimised 1D-CNN-4-layer GRU model obtained through
ten-fold cross-validation with normalised means and standard deviation.

Table 2. The optimised deep learning models and accuracy rates with ten-fold cross-validation.

Deep learning model Epochs  10-fold cross-validation P+
results (accuracy)

5-layer CNN 50 96.55+ 1.60 % 0.024
11-layer CNN without residual layers 50 95.71+2.23 % 0.005
11-layer CNN with 3 residual layers 50 97.111.05% 0.052
4-layer-unidirectional-LSTM 70 95.23+1.23% <0.001
4-layer-bidirectional-LSTM 90 94.64+1.87% <0.001
4-layer -unidirectional -GRU 30 96.13 1 1.82% 0.012
4-layer- bidirectional-GRU 35 97.04+£2.18 % 0.116
1-layer-1D-CNN+4-layer-unidirectional GRU 90 97.77 +1.08% 0.487
1 layer-1D-CNN+4-layer-unidirectional GRU (without maxpooling) 90 98.13+ 1.05% NA

1-layer-1D-CNN+4-layer unidirectional LSTM (without maxpooling) 250 95.52 + 3.46% 0.052
1-layer-1D-CNN+4-layer-bidirectional GRU (without maxpooling) 90 97.81 £ 0.96% 0.513
1-layer-1D-CNN+3-layer-unidirectional GRU 80 96.47 + 2.54% 0.093
2-layer-1D-CNN+2-layer-unidirectional GRU 70 97.82 1 0.59% 0.445
2-layer-1D-CNN+3-layer-unidirectional GRU 90 97.77 + 1.45% 0.878
3-layer-1D-CNN+3-layer-unidirectional GRU 70 96.98 + 1.87% 0.145
3-layer-1D-CNN+2-layer-unidirectional GRU 90 97.02 £ 0.92% 0.028
1-layer CNN-2-layer-unidirectional GRU 70 96.50 + 1.16% 0.003
2-layer CNN-1-layer-unidirectional GRU 70 97.92 + 0.82% 0.661
2-layer CNN-1-layer-bidirectional GRU 70 96.27 + 1.60% 0.010
2-layer CNN-1-layer-unidirectional LSTM 90 96.03 £+ 1.08% <0.001

* P-value for the models in comparison with 1-layer, -1D-CNN+4-layer-unidirectional GRU
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Table 3. Precision, recall, and F1 scores for each group in the 1d-CNN-4-layer GRU model.

Precision Recall F1-scores
Normal 0.9778 £+ 0.0174 0.9845+0.0139 0.9800 £ 0.0118
Neurogenic 0.9926 + 0.0118 0.9761 + 0.0162 0.9842 £ 0.0081
Myogenic 0.9787 £+ 0.0148 0.9817 £ 0.0235 0.9800 1 0.015
Accuracy 0.9813 4 0.0105 0.9813 £ 0.0105 0.9813 £ 0.0105

| -Down-sampling
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Normal
Neurogenic
Myogenic
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Figure 3. The deep learning pipeline achieved a mean accuracy rate of 98.13 + 1.05% with ten-fold cross-validation. A similar archi-
tecture was also designed using LSTM and bilateral GRU instead of unilateral GRU.

tecture of the model are shown in Figures 3 and
4, respectively. The residual convolutional neural
network pipeline and architecture are presented
in Figure 5.

Discussion

Receiving needle EMG signal segments as input
data, our study is the first to classify needle EMG
data using a deep learning technique, achieving
high accuracy. Both the residual convolutional
neural networks and the 1D-CNN-4-layer GRU
model without max pooling yielded high accuracy
results. In the literature, although CNN is a suc-
cessful deep learning tool receiving raw images as
input, LSTM and GRU, as subtypes of RNN, show
more promising results in time series data, such
as electroencephalography [18]. Accordingly, our
study mainly focused on RNN-based models to
achieve high accuracy rates. Notably, GRU-based
models showed slightly, and in some cases, sta-
tistically significantly better performance than
LSTM-based models. Although the accuracy

Journal of Medical Science 2025 December;94(4)

rates of LSTM-based models surpass those of
GRU-based models in most deep learning stud-
ies in the literature, GRU-based models have also
been reported to show superior success rates in
some deep learning studies. The small size of the
data set and the low dimension of the input data
could account for the better accuracy results of
GRU-based models [19,20]. The improved accu-
racy rates observed in unidirectional models may
also be attributed to similar underlying factors.
Despite the success of RNN in time series
data, residual CNN models also yielded promising
results in our study. The residual CNN model archi-
tecture we designed was inspired by the architec-
ture of nNEMGnet, as described in the study by Yoo
et al. [8]. Because the signal segment length for
the input layer was 4-fold shorter than nEMGnet,
the same number of layers would cause a nega-
tive output dimension. Therefore, the number of
layers was fewer than that of nEMGnet. Howev-
er, in our study, results for the accuracy of seg-
ment-based classification are significantly higher
compared with the 62.35 + 4.60% reported by Yoo
et al. [8]. This may be due to both the character-
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Figure 5. The residual convolutional neural network pipeline achieved an accuracy of 97.1 + 1.05%.
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istics of the dataset and nuances in the architec-
tural design. Overall, adding residual layers could
improve the performance of convolutional neural
networks, as indicated by the statistical analysis
of the study. Although the suggested model, mod-
el 1D-CNN+4-layer-unidirectional GRU without
maxpooling, had significantly better performance
than other CNN models, there was no statistically
significant difference between the proposed mod-
el and the 11-layer CNN with residual layers.

On the other hand, Sengur et al. [12] achieved
96.8% accuracy in classifying normal and ALS
groups using deep learning, which was higher
than in other deep learning studies. However,
the input data was not the EMG trace itself. EMG
signal segments were converted into two-di-
mensional spectrograms through the CWT and
Pseudowigner-Wille distribution function imple-
mentation.

Despite our study having some promising
results, conventional machine learning tech-
niques have yielded better accuracy. Extracting
features from time-frequency analysis, Samantha
et al. [21] achieved 99.5% accuracy in classifying
ALS and normal groups using a genetic algo-
rithm. Roy et al. [22] achieved 100% accuracy in
discriminating between healthy and neuropathy
conditions using a support vector machine and
feature extraction methods based on time-fre-
quency analysis. Dubey et al. [23] employed the
Hilbert transform for feature extraction, achieving
99.5% accuracy with feedforward neural networks
in classifying neuropathy, myopathy, and normal
groups. Kamali et al. [24] achieved 100% accuracy
using arandom forest algorithm on samples from
the tibialis anterior muscle for the classification
of neuropathy, myopathy, and normal groups.
They also employed time-frequency analysis for
feature extraction. As seen in previous studies,
feature extraction from time-frequency analy-
sis yields the best results. Therefore, it may be
pertinent to deepen the understanding of deep
learning methodologies, as well as to design and
refine their automatic feature extraction capabili-
ties within the scope of time-frequency analysis.
Further optimisation of deep learning models is
necessary to achieve higher accuracy rates.

In our study, we created the dataset by retro-
spectively using recorded data. Similar to pub-
licly available datasets, it consisted of needle
EMG signals recorded from the muscles of 26
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subjects: seven individuals with myopathy, eight
individuals with neuropathy, and 11 healthy indi-
viduals. The number of subjects for each group
was similar to the EMGLab dataset, a public-
ly available dataset used in most studies [1]. In
contrast to the EMGLab dataset, our dataset did
not contain patients with motor neuron disease.
However, patients with radiculopathy and nerve
palsies have typical clinical features and needle
EMG patterns easily classified by an expert.

In contrast to the EMGLab dataset, since the
study was retrospective, all patients had records
from various muscles in our dataset. Additionally,
depending on the patient's cooperation during the
recorded part of the study, different recruitment
patterns may be observed in the signal segments.
On one hand, the involvement of various muscles
and a wide variety of recruitment patterns could
make the classification task more challenging.
On the other hand, standardised recordings from
the same muscle could help achieve more difficult
tasks, such as disease subgroup classifications.

Despite deep neural networks being consid-
ered black boxes in terms of their feature extrac-
tion capabilities, we arranged the input param-
eters based on some electrophysiologic param-
eters to optimise the results. Considering that
the sweep time of an EMG device screen is com-
monly adjusted to 5 msec/div or 10 msec/div, and
a 100-msec trace provides an idea about motor
unit action potential firing rates and morphology,
we determined the length of EMG segments to be
100 msec. Most previous studies also used 100-
msec segments [8]. The residual convolutional
network architecture was similar to that of nEM-
Gnet in the study by Yoo et al. [8]. However, we
preferred smaller sizes of convolutional filter ker-
nels to process high-frequency information. The
design of the 1-D CNN-4-layer GRU model also
contains architectural nuances. We estimated the
number of units in the first RNN layer by consid-
ering specific parameters of the motor unit action
potentials. The approximate motor unit action
potential duration varies between 5 and 15 msec;
it is shorter in myopathy (1-5 msec) but longer in
neuropathy (15-25 msec) [3]. As 245 units of RNN
capture approximately 25 milliseconds, it could
be adequate for processing all types of motor
unit action potential morphologies.

Additionally, because high-frequency infor-
mation plays a crucial role in the discrimination



of myopathy, neuropathy, and standard motor unit
action potentials, and GRU layers are specialised
in learning time series patterns, the model was
further optimised by omitting the maxpooling
layer, which might cause losses in the high-fre-
quency information captured by the GRU units.
In most studies, a flattened layer is used before
GRU units. However, we did not use this due to its
low accuracy rates in tests. Because the convo-
lution layer produces output data as several time
series equal to the number of convolution filters,
flattening it may cause some information to be
lost in the time series processed by the GRU lay-
er, which could lead to low accuracy rates.

The retrospective design of the study did not
permit a standardised assessment of motor unit
potential recruitment patterns. This limitation
also led to the exclusion of acute neuropathies
from the study, conditions that require analysis of
recruitment patterns for an accurate understand-
ing [3]. When a muscle is slightly contracted, the
smallest motor unit action potential first starts
firing, and its frequency is approximately 5-8 Hz
at the beginning. By increasing the force, the fre-
quency increases by 3-5 Hz, then a second larger
motor unit is recruited at <15 Hz [25]. By 50% of
maximal voluntary contraction, almost all motor
units are recruited in small limb muscles, and fur-
ther voluntary contraction rates could increase
the firing frequency of motor unit action potentials
up to 50 Hz. In large limb muscles, motor units are
recruited at least 90% of maximal voluntary con-
traction, while muscle firing frequency reaches up
to 30-40 Hz [26]. Thus, a motor unit action poten-
tial can be fired one to five times in small mus-
cles and one to four times in large muscles within
a 100-msec period. Although this rate increases
in myogenic muscle, the number of motor unit
action potentials recruited reduces in neurogen-
ic muscle [3]. Finally, a wide variety of voluntary
motor unit contraction rates have been success-
fully classified using the proposed deep learning
model with 245 hidden units, which can capture
periods of approximately 25 milliseconds. Con-
sidering that patients may have poor cooperation
in recruitment tasks in clinical practice, the high
accuracy rate of the proposed model in classify-
ing neuromuscular disorders offers hope for the
real-time implementation of the model. Neverthe-
less, standardisation of recruitment patterns, par-
ticularly for training neural network models, could

both increase accuracy and help classify neuro-
pathic and myopathic pattern subtypes.

We included a wide variety of small and large
muscles in the limbs, hips, and shoulders in our
study. The age of the subjects also ranged from
12 to 80 years. Different limb muscles have
slightly different ranges of amplitude, duration,
or polyphasic rates [3]. Furthermore, with age-
ing, motor unit action potential morphology can
also differ slightly in size, and action potentials
with longer durations and higher amplitudes are
observed in healthy older subjects [3], which may
lead to lower accuracy rates in pattern recogni-
tion. Despite acquiring data recorded from vari-
ous muscles from a highly heterogeneous patient
population, we achieved high accuracy rates
using the proposed model. Although this situ-
ation may be helpful for the real-life implemen-
tation of the model, standardising the muscles
could aid in muscle-specific assessments and
increase accuracy. Studying only with the tibialis
anterior muscle, Roy et al. [22] and Kamali et al.
[24] achieved 100% accuracy.

After labelling the muscle according to the
EMG report results, both artefacts and EMG sig-
nal segments that did not represent typical pat-
terns of labelled neuromuscular conditions were
excluded. This approach may increase accu-
racy rates and could be considered a barrier to
implementing the model for real-time use. How-
ever, the fact that most patients in the data set
had acquired myopathy and radiculopathy, with
patchy muscle involvement, particularly in some
acquired myopathies and radiculopathies, could
explain the standard motor unit action potential
patterns in pathologic signal segments [3]. Label-
ling these segments as neuropathic or myopath-
ic would reduce the quality of training and result
in low accuracy rates. However, there may still
be some subtle patterns of the pathology that
could not be discerned by an expert but could be
detected with deep learning systems [27].

This study has certain limitations. The small
sample size is a primary constraint, which may
increase the risk of overfitting. Additionally, the
limited number of patients prevented the use of
patient-based classification and the application
of an external validation data set, as referenced by
de Jonge et al. [1]. Furthermore, we were unable
to use an independent external validation set.
The results cannot be generalised to the entire
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neuromuscular disorder classification because
the patient population in our study was small and
restricted to patients with radiculopathy, axonal
nerve injury, and predominantly inflammatory
myopathies. As a result, both the limited diversi-
ty of the neuromuscular disorders and the small
size of the datasets reduce the generalizability
of the results and increase the risk of overfitting.
Moreover, the real-time implementation of auto-
matic classification of neuromuscular disorders
requires the discrimination of motor unit action
potentials, artefacts, needle insertion potentials,
and resting state potentials. In a retrospectively
designed clinical study, Hubers et al. [17] classi-
fied signal segments with artefacts, resting-state
potentials, and motor unit action potentials with
96% accuracy at the first step, and then the clas-
sification of motor unit action potentials was per-
formed. Our study focused solely on classifying
motor unit action potentials. We were unable to
assess different levels of recruitment due to the
small dataset size and the retrospective design
of the study. For this reason, having only reduced
recruitment as a pathologic finding, acute neu-
ropathies were excluded. Therefore, assessing
recruitment patterns in future studies would also
improve real-life generalizability.

The current findings of this study are pre-
liminary. Future work will focus on increasing
the number of patients for patient-based clas-
sification and expanding the dataset to include
a broader spectrum of pathologies, such as com-
mon genetic and inflammatory myopathies, motor
neuron disease, and both acquired and genetic
polyneuropathies. Additionally, plans include
conducting multicenter studies to obtain external
validation datasets and using labelling based on
expert consensus, aiming to enhance the reliabil-
ity of the results. Ultimately, after developing deep
learning models for recognising motor unit action
potential morphology, artefacts, resting-state
potentials, and recruitment patterns, the objective
is to create real-time systems with high accuracy.

Conclusion

Deep learning is actively used in most current
studies for pattern recognition tasks. The auto-
matic feature extraction ability of deep learn-
ing tools reduces the complexity of the machine
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learning procedure. Showing good performance
on time-series data, both 1D-CNN-4-layer GRU
and residual convolutional neural network mod-
els show promising results on needle-EMG data
in terms of neuromuscular disease classification.
However, more clinical studies with larger data-
sets are needed to validate the results for clinical
application.
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