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Deep neural networks to classify motor 
unit action potential signals acquired 
using needle electromyography
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ABSTRACT

Aim. To classify motor unit action potential patterns using a deep learning technique with high accuracy.
Material and methods. A dataset was compiled from three main groups of motor unit action potential pat-
terns, including myopathy, neuropathy, and normal, as assessed by a clinical neurophysiologist during rou-
tine clinical assessments. After preprocessing the raw signals in the dataset, a total of 3,152 signal seg-
ments from 96 muscles of 26 individuals were divided into training and test sets. Deep learning network 
models were developed in Python using the Keras API in Jupyter Notebook.
Results. Among the deep learning models, a hybrid deep neural network model with a one-dimensional con-
volution layer as an input layer and four layers of gate recurrent units (1DCNN-GRU) achieved the highest 
accuracy rates. Ten-fold cross-validation resulted in a mean accuracy rate of 98.13 ± 1.05%.
Conclusions. Both conventional machine learning models and deep learning models could classify needle EMG 
patterns that belonged to three neuromuscular disorder groups with high accuracy. However, more clinical 
studies with larger datasets are needed for validation. In contrast to conventional machine learning techniques, 
deep learning models could receive signals as input data and automatically extract the required features. 
Therefore, they could facilitate the real-time implementation of the pattern recognition tasks in the future.

Introduction

Assessing audio-visually, needle electromyogra-
phy (EMG) is a crucial diagnostic tool used to dif-
ferentiate between the three main types of neu-

romuscular conditions: healthy, neuropathic, or 
myopathic [1]. During needle EMG procedures, 
potentials originating from needle insertion into 
a muscle, muscle cell membrane potentials while 
resting, and motor unit action potentials during 
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muscle contraction are recorded [2,3]. Although 
there are many experienced electromyographers 
or neurophysiologists, needle EMG examinations 
are still highly subjective, and, in some cases, 
reaching a consensus for certain kinds of pat-
terns is unlikely [1,4]. Machine learning methods, 
intensive learning, have the potential to enhance 
standardisation in pattern recognition and may 
offer valuable diagnostic support to less experi-
enced electromyographers in the future [5]. 

Machine learning methods have been exten-
sively applied in recent clinical research to 
address challenges related to classifi cation, 
decision-making, and prognosis prediction with-
in clinical practice. [5,6]. As a subtype of artifi cial 
intelligence, machine learning has yielded prom-
ising results in biomedical image and signal pro-
cessing studies, paving the way for the develop-
ment of clinical decision support systems [7]. Var-
ious machine learning techniques are available 
for use in medical studies, which can be grouped 
into classic or conventional machine learning 
and deep learning techniques based on the data 
processing steps [5,8]. Traditional machine learn-
ing techniques share standard pipelines for pro-
cessing image or time series data. After prepro-
cessing data, quantitative analysis is applied to 
extract features. The best meaningful features for 
classifi cation are then required to be chosen as 
the input data for a machine learning tool, such 
as a decision tree, support vector machine, logis-
tic regression, or a small-scale artifi cial neural 
network, such as a multi-layer perceptron [6,9]. 
Although conventional machine learning tech-
niques have hand-crafted feature extraction and 
selection steps in their data processing pipeline, 
deep learning techniques such as convolutional 
neural networks (CNN), recurrent neural networks 
(RNN), autoencoders, long-short term memories 
(LSTM), and gate recurrent units (GRU) can auto-
matically achieve these processing steps. There-
fore, the image or signal presented in a time-se-
ries format can be provided as input data to the 
classifi cation pipeline of an artifi cial neural net-
work [1, 5, 8]. Direct use of signal data as input 
may streamline the automation process and 
enhance decision-making capabilities, enabling 
real-time implementation. 

Despite several conventional machine learn-
ing studies showing promising results for classi-

fying needle EMG signals, studies that implement 
deep learning for needle EMG signal classifi ca-
tion are scarce [1,8]. Few studies have focused 
on classifying resting state membrane poten-
tials [1]. Nodera et al. [10] classifi ed resting-state 
potentials with 86% accuracy using Mel spectro-
grams as input data, and pre-trained models of 
convolutional neural networks for image recog-
nition were employed. The accuracy reached up 
to 94% in the 19-layered Visual Geometry Group 
(VGG-19), a convolutional neural network model 
with 19 weighted layers, by using data augmenta-
tion techniques. Nam et al. [11] classifi ed resting 
state potentials using Inception-v4 as a convolu-
tional neural network, yielding results with 93% 
accuracy. The input data consisted of image fi les 
with .png extensions representing the resting 
state potentials. There are also a few studies with 
encouraging results that aim to classify motor 
unit action potentials during muscle contraction 
using deep learning techniques [1]. Sengur et al. 
[12] used a continuous wavelet transform (CWT) 
spectrogram and Pseudowigner-Wille distribu-
tion function for preprocessing. Two-dimension-
al spectrograms were used as input data for the 
two-dimensional convolutional neural network 
(2D-CNN) pipeline, which achieved 96.8% accura-
cy in classifying two groups: Amyotrophic Lateral 
Sclerosis (ALS) and normal. Yoo et al. [8] utilised 
nEMGnet, a one-dimensional residual convolu-
tional neural network inspired by the Residual 
Neural Network (ResNet) and the Visual Geometry 
Group (VGG) neural network, for the classifi cation 
of EMG segments, achieving 62.35 ± 4.60% accu-
racy in classifying normal, neurogenic, and myo-
genic segments. Then, the divide-and-vote algo-
rithm was used to determine the disease labelling 
for each muscle and patient with 83% accuracy.

An RNN is a specialised form of deep neu-
ral network particularly well-suited for handling 
sequential data, such as time series [13]. They are 
mainly used to predict the following likely data. 
However, classifying signals or time series could 
also be possible by arranging the architecture 
[14]. LSTM and GRU are subtypes of RNNs that 
yield successful results in surface EMG studies 
[15, 16]. Our study aims to classify nEMG data with 
motor unit action potentials into three categories, 
standard, neuropathy, and myopathy, using deep 
learning techniques with high accuracy. 
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Material and methods

Data acquisition
We included EMG traces acquired using concen-
tric needle EMG recordings on a Natus Neurol-
ogy Nicolet EMG system with an AT2+6 amplifi -
er in this study. We retrospectively reviewed the 
recorded needle EMG signals obtained in routine 
clinical practice from December 2022 to June 
2023, together with the EMG reports of clinical 
neurophysiologists. We received a total of 155 
EMG signal traces corresponding to 134 muscles 
in 33 patients. We applied labelling at the patient 
and muscle levels according to the EMG reports in 
the archive. We excluded cranio-bulbar muscles 
due to the shorter duration and smaller amplitude 
of motor unit action potentials compared with 
limb muscles [3,17]. Among 33 subjects, 15 were 
normal, 11 had pathologies causing neurogenic 
motor unit action potentials, and seven had myo-
pathies with myogenic action potentials. Among 
the 15 normal subjects, we excluded one subject 
due to an increased percentage of polyphasic 

motor unit action potential fi ndings and another 
two subjects because the study was performed 
only on cranio-bulbar muscles. In the neurogenic 
group, we excluded one patient because the study 
focused only on cranio-bulbar muscles, and two 
patients due to being in the acute to subacute 
phase of neuropathy, as no changes in motor unit 
action potential morphology related to reinnerva-
tion were observed. We also excluded muscles 
that did not represent labelled patterns. 

Finally, we included EMG traces of 29 mus-
cles from seven individuals with myopathy, 24 
muscles from eight individuals with neuropathy, 
and 43 muscles from 11 normal individuals in the 
study. Detailed information about the subjects is 
presented in Table 1A–1E. The recording parame-
ters included a 30-50 Hz high-pass fi lter, a 10 kHz 
low-pass fi lter, and a sampling rate of 48,000 per 
second. We extracted EMG data from the Synerqy 
software system in .txt format. We reformatted 
the .txt fi les for use with a program developed in 
WinForms Visual Studio C++ to review traces in 
100-msec sweep times. We also used this pro-

Table 1A. Demographics of the cases according to records. 

Demographics Female Male Total Age (Mean/Median/Range)
Myogenic 2 5 7 52.8/56/21-80
Neurogenic 2 6 8 52.6/52.5/38-72
Normal 5 6 11 45.4/54/12-76
Total 9 17 26 49.6/53.5/12-80

Table 1B. Sampled muscle records from the upper limb and shoulder

Muscles sampled PM Is Ss TB D BB EDC FDS FCU FDI ADM APB
Myogenic 4 - 2 - 4 5 4 - - 1 - -
Neurogenic - - 1 - 2 - - - 1 1 1 2
Normal 1 1 1 1 6 5 2 1 1 5 - 1
Total 5 1 4 1 12 10 6 1 2 7 1 3

PM = Pectoralis major, Ss = Supraspinatus, Is = Infraspinatus, Triceps Brachi = TB, D = Deltoid, BB = biceps brachi, EDC = Extensor digitorum 
Communis, FDS = Flexor Digitorum Superfi cialis, FCU = Flexor Carpi Ulnaris, FDI =  First Dorsal interosseus, ADM = Abductor Digiti Minimi, 
APB = Abductor Pollicis Brevis 

Table 1C. Sampled muscle records from the lower limb and hip.

Muscles sampled Ip GlMax GlMed TFL RF VM AM TA GcM TP EHL
Myogenic 7 - - - 1 1 - - - - -
Neurogenic - 2 2 1 - 1 1 5 2 1 1
Normal 1 - - - 1 4 - 5 6 1 -
Total 8 2 2 1 2 6 1 10 8 2 1

Ip = Iliopsoas, RF = Rectus Femoris, VM = Vastus Medialis, AM = Adductor Magnus, TA =  Tibialis Anterior, GcM = Gastrocnemius Medialis, TP 
= Tibialis Posterior, EHL = Extensor Hallucis Longus, TFL = Tensor Fascia Lata, GlMax =  Gluteus Maximus, GlMed =  Gluteus Medius
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Table 1D. Number of neurogenic conditions diagnosed.

Neurogenic Pathologies n
Chronic L5-S1 radiculopathy 1
Subacute-Chronic L4-L5 radiculopathy 1
Chronic L4-L5 radiculopathy 1
Chronic L3-L4, L4-L5 radiculopathy 1
Chronic C5-C6 radiculopathy 2
Chronic median nerve injury 1
Chronic lower truncus injury 1

Table 1E. Number of myogenic conditions diagnosed.

Myogenic Pathologies n
Myopathy alone 5
Myopathy with fi brillations 1
Myopathy with myotonia 1

gram for preprocessing and labelling. The study 
received approval from the ethics committee of 
Karadeniz Technical University. 

Preprocessing 
We down-sampled raw needle EMG signals to 
9600 Hz to reduce computational complexity. 
For the down-sampling procedure, we used an 
algorithm that calculates the second derivative 
of each signal. The signal with the lowest second 
derivative value was chosen as the representa-
tive signal for each of the fi ve consecutive signals 
in the trace. As a result, the local minimums and 
maximums of high-frequency patterns – con-
taining details regarding small motor unit action 
potentials, turns, and phases, which are essential 
characteristics of myopathy – were retained dur-
ing the down-sampling process (see Figure 1). 
We also fi ltered the signal traces using a 50-Hz 
high-pass fi lter to remove redundant low-fre-
quency information digitally. Each nEMG data 
sample recorded from the labelled muscle has 
traces that are 4 to 20 seconds long. Two neuro-
physiologists (IT and CB) reviewed all nEMG trac-
es and selected segments for labelling that were 
artefact-free and at least 0.5 seconds long. We 
sliced the extracted traces into 100-msec seg-
ments with 50-msec overlap. Following process-
ing, the neurophysiologists conducted a thorough 
review of each signal segment. They removed any 
traces from the dataset that did not contain char-
acteristic features of the designated neuromus-

cular disorder group. We also excluded the traces 
with far-fi eld potentials. Most of the signal seg-
ments had 945-960 consecutive signal series. We 
determined the standard signal vector length to 
be 940 to ensure a consistent size for each signal 
segment. Eight signal segments, three of them 
belonging to the normal group, and fi ve belong-
ing to the neurogenic group, required zero pad-
ding at the end as a result of being shorter than 
940. Finally, we selected 1221 normal, 718 neuro-
genic, and 1212 myogenic EMG signal segments 
as the training and test sets. Thus, we generated 
a dataset consisting of 3,152 signal rows with 940 
columns.

Deep Learning Network Model and Training
We performed deep learning using Python 3.7.16 
in Jupyter Notebook. We designed deep neural 
networks using LSTM, GRU, and CNN in various 
architectures with the Keras library and a Ten-
sorFlow 2.6.0 backend in Python. We utilised the 
classifi cation model to categorise EMG signal 
segments into three groups: neurogenic, myo-
genic, and normal. Therefore, the output layer 
consisted of three neurons, representing three 
neuromuscular disease groups according to the 
one-against-all principle. Preprocessed EMG 
signal segments, recorded as a CSV table, were 
provided as input data. Initially, we used 80% of 
labelled signal segments as the training set and 
the remainder as the test set. Then, avoiding 
overfi tting, we also applied ten-fold cross-valida-
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tion with randomly chosen training and test sets 
to assess the performance of the models. We 
performed the training and testing procedure on 
a CUDA-enabled NVIDIA GPU (GeForce RTX 3060) 
running on the Windows 11 operating system. 

Statistics
We performed the statistics using the R Studio 
software package, version 4.4.1. For continuous 
variables, we conducted the Shapiro-Wilk test to 
check the normality of data distribution. We used 
Student’s t-test for normally distributed continu-
ous variables and the Mann-Whitney U test for 
non-normally distributed continuous variables 
to evaluate the differences between the groups. 
Statistical signifi cance was considered signifi -
cant if p < 0.05.

Results

We tested various deep learning architectures 
and optimised the best-performing models using 
the grid search algorithm. Finally, we obtained the 
mean accuracy rates of the ten-fold cross-vali-

dation results and assessed the models through 
statistical analysis. 

We developed two main models. One was 
a residual convolutional network, similar to nEM-
Gnet from Yoo et al., and the other was a multi-
layer RNN model that utilised either a unidirec-
tional or bidirectional GRU or LSTM. We achieved 
the highest mean accuracy rate (98.13 ± 1.05%) 
using ten-fold cross-validation when testing the 
model 1D-CNN+4-layer-unidirectional GRU with-
out max pooling. Statistical analysis revealed 
that the accuracy rate of the model 1D-CNN+4-
layer-unidirectional GRU without maxpooling was 
signifi cantly higher than 5-layer CNN (p = 0.024), 
11-layer CNN without residual layers (p = 0.005), 
4-layer unidirectional LSTM (p < 0.001), 4-lay-
er-bidirectional-LSTM (p < 0.001), 4-layer-unidi-
rectional GRU (p = 0.012), 3-layer-1D-CNN+2-lay-
er-unidirectional GRU (p = 0.028), 1-layer CNN-2-
layer-unidirectional GRU (p = 0.003), 2-layer CNN-
1-layer-bidirectional GRU (p = 0.01), and 2-layer 
CNN-1-layer-unidirectional LSTM (p < 0.001). We 
summarised all results obtained with ten-fold 
cross-validation on the dataset, which was split 
randomly into a train set and a test set, and the 

Figure 1. We down-sampled the signal segments to 9600 Hz to reduce computational complexity. However, during the down-sam-
pling procedure, high-frequency information could be missed, which is particularly relevant for the recognition of myopathy forms. 
Each trace segment contains 100-msec-long signals. The raw trace, the fi rst trace, contains high-frequency details that may be over-
looked by traditional down-sampling methods, such as average pooling, which is seen in the second trace. By computing the second 
derivative at each signal point, peaks can be identifi ed and selected as representative points during downsampling, as shown in the 
third trace. This approach enables greater preservation of high-frequency information compared with conventional techniques. 



Journal of Medical Science 2025 December;94(4) 321

p-values for the models compared to 1-layer-1-
D-CNN+4-layer-unidirectional GRU are present-
ed in Table 2. For the best-performing model, 
1D-CNN+4-layer-unidirectional GRU without max 
pooling, we present the normalised confusion 

matrix of the ten-fold cross-validation results, 
along with the mean and standard deviation, in 
Figure 2. The mean and standard deviation of 
precision, recall, and F1 scores are also present-
ed in Table 3. The pipeline and the detailed archi-

Table 2. The optimised deep learning models and accuracy rates with ten-fold cross-validation.

Deep learning model Epochs 10-fold cross-validation
results (accuracy)

P*

5-layer CNN 50 96.55 ± 1.60 % 0.024
11-layer CNN without residual layers 50 95.71 ± 2.23 % 0.005
11-layer CNN with 3 residual layers 50 97.1 ± 1.05 % 0.052
4-layer-unidirectional-LSTM 70 95.23 ± 1.23% <0.001
4-layer-bidirectional-LSTM 90 94.64 ± 1.87% <0.001
4-layer -unidirectional -GRU 30 96.13 ± 1.82% 0.012
4-layer- bidirectional-GRU 35 97.04 ± 2.18 % 0.116
1-layer-1D-CNN+4-layer-unidirectional GRU 90 97.77 ± 1.08% 0.487
1 layer-1D-CNN+4-layer-unidirectional GRU (without maxpooling) 90 98.13 ± 1.05% NA
1-layer-1D-CNN+4-layer unidirectional LSTM (without maxpooling) 250 95.52 ± 3.46% 0.052
1-layer-1D-CNN+4-layer-bidirectional GRU (without maxpooling) 90 97.81 ± 0.96% 0.513
1-layer-1D-CNN+3-layer-unidirectional GRU 80 96.47 ± 2.54% 0.093
2-layer-1D-CNN+2-layer-unidirectional GRU 70 97.82 ± 0.59% 0.445
2-layer-1D-CNN+3-layer-unidirectional GRU 90 97.77 ± 1.45% 0.878
3-layer-1D-CNN+3-layer-unidirectional GRU 70 96.98 ± 1.87% 0.145
3-layer-1D-CNN+2-layer-unidirectional GRU 90 97.02 ± 0.92% 0.028
1-layer CNN-2-layer-unidirectional GRU 70 96.50 ± 1.16% 0.003
2-layer CNN-1-layer-unidirectional GRU 70 97.92 ± 0.82% 0.661
2-layer CNN-1-layer-bidirectional GRU 70 96.27 ± 1.60% 0.010
2-layer CNN-1-layer-unidirectional LSTM 90 96.03 ± 1.08% <0.001

* P-value for the models in comparison with 1-layer, -1D-CNN+4-layer-unidirectional GRU

Figure 2. Confusion matrix of the optimised 1D-CNN-4-layer GRU model obtained through 
ten-fold cross-validation with normalised means and standard deviation.
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Figure 3. The deep learning pipeline achieved a mean accuracy rate of 98.13 ± 1.05% with ten-fold cross-validation. A similar archi-
tecture was also designed using LSTM and bilateral GRU instead of unilateral GRU.

Table 3. Precision, recall, and F1 scores for each group in the 1d-CNN-4-layer GRU model.

Precision Recall F1-scores
Normal 0.9778 ± 0.0174 0.9845 ± 0.0139 0.9800 ± 0.0118
Neurogenic 0.9926 ± 0.0118 0.9761 ± 0.0162 0.9842 ± 0.0081
Myogenic 0.9787 ± 0.0148 0.9817 ± 0.0235 0.9800 ± 0.015
Accuracy 0.9813 ± 0.0105 0.9813 ± 0.0105 0.9813 ± 0.0105

tecture of the model are shown in Figures 3 and 
4, respectively. The residual convolutional neural 
network pipeline and architecture are presented 
in Figure 5.

Discussion

Receiving needle EMG signal segments as input 
data, our study is the fi rst to classify needle EMG 
data using a deep learning technique, achieving 
high accuracy. Both the residual convolutional 
neural networks and the 1D-CNN-4-layer GRU 
model without max pooling yielded high accuracy 
results. In the literature, although CNN is a suc-
cessful deep learning tool receiving raw images as 
input, LSTM and GRU, as subtypes of RNN, show 
more promising results in time series data, such 
as electroencephalography [18]. Accordingly, our 
study mainly focused on RNN-based models to 
achieve high accuracy rates. Notably, GRU-based 
models showed slightly, and in some cases, sta-
tistically signifi cantly better performance than 
LSTM-based models. Although the accuracy 

rates of LSTM-based models surpass those of 
GRU-based models in most deep learning stud-
ies in the literature, GRU-based models have also 
been reported to show superior success rates in 
some deep learning studies. The small size of the 
data set and the low dimension of the input data 
could account for the better accuracy results of 
GRU-based models [19,20]. The improved accu-
racy rates observed in unidirectional models may 
also be attributed to similar underlying factors. 

Despite the success of RNN in time series 
data, residual CNN models also yielded promising 
results in our study. The residual CNN model archi-
tecture we designed was inspired by the architec-
ture of nEMGnet, as described in the study by Yoo 
et al. [8]. Because the signal segment length for 
the input layer was 4-fold shorter than nEMGnet, 
the same number of layers would cause a nega-
tive output dimension. Therefore, the number of 
layers was fewer than that of nEMGnet. Howev-
er, in our study, results for the accuracy of seg-
ment-based classifi cation are signifi cantly higher 
compared with the 62.35 ± 4.60% reported by Yoo 
et al. [8]. This may be due to both the character-
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Figure 4. Detailed architecture of the 1D-CNN-4-layer GRU model deep learning model. 

Figure 5. The residual convolutional neural network pipeline achieved an accuracy of 97.1 ± 1.05%.
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istics of the dataset and nuances in the architec-
tural design. Overall, adding residual layers could 
improve the performance of convolutional neural 
networks, as indicated by the statistical analysis 
of the study. Although the suggested model, mod-
el 1D-CNN+4-layer-unidirectional GRU without 
maxpooling, had signifi cantly better performance 
than other CNN models, there was no statistically 
signifi cant difference between the proposed mod-
el and the 11-layer CNN with residual layers.

On the other hand, Sengur et al. [12] achieved 
96.8% accuracy in classifying normal and ALS 
groups using deep learning, which was higher 
than in other deep learning studies. However, 
the input data was not the EMG trace itself. EMG 
signal segments were converted into two-di-
mensional spectrograms through the CWT and 
Pseudowigner-Wille distribution function imple-
mentation.

Despite our study having some promising 
results, conventional machine learning tech-
niques have yielded better accuracy. Extracting 
features from time-frequency analysis, Samantha 
et al. [21] achieved 99.5% accuracy in classifying 
ALS and normal groups using a genetic algo-
rithm. Roy et al. [22] achieved 100% accuracy in 
discriminating between healthy and neuropathy 
conditions using a support vector machine and 
feature extraction methods based on time-fre-
quency analysis. Dubey et al. [23] employed the 
Hilbert transform for feature extraction, achieving 
99.5% accuracy with feedforward neural networks 
in classifying neuropathy, myopathy, and normal 
groups. Kamali et al. [24] achieved 100% accuracy 
using a random forest algorithm on samples from 
the tibialis anterior muscle for the classifi cation 
of neuropathy, myopathy, and normal groups. 
They also employed time-frequency analysis for 
feature extraction. As seen in previous studies, 
feature extraction from time-frequency analy-
sis yields the best results. Therefore, it may be 
pertinent to deepen the understanding of deep 
learning methodologies, as well as to design and 
refi ne their automatic feature extraction capabili-
ties within the scope of time-frequency analysis. 
Further optimisation of deep learning models is 
necessary to achieve higher accuracy rates. 

In our study, we created the dataset by retro-
spectively using recorded data. Similar to pub-
licly available datasets, it consisted of needle 
EMG signals recorded from the muscles of 26 

subjects: seven individuals with myopathy, eight 
individuals with neuropathy, and 11 healthy indi-
viduals. The number of subjects for each group 
was similar to the EMGLab dataset, a public-
ly available dataset used in most studies [1]. In 
contrast to the EMGLab dataset, our dataset did 
not contain patients with motor neuron disease. 
However, patients with radiculopathy and nerve 
palsies have typical clinical features and needle 
EMG patterns easily classifi ed by an expert.

In contrast to the EMGLab dataset, since the 
study was retrospective, all patients had records 
from various muscles in our dataset. Additionally, 
depending on the patient's cooperation during the 
recorded part of the study, different recruitment 
patterns may be observed in the signal segments. 
On one hand, the involvement of various muscles 
and a wide variety of recruitment patterns could 
make the classifi cation task more challenging. 
On the other hand, standardised recordings from 
the same muscle could help achieve more diffi cult 
tasks, such as disease subgroup classifi cations.

Despite deep neural networks being consid-
ered black boxes in terms of their feature extrac-
tion capabilities, we arranged the input param-
eters based on some electrophysiologic param-
eters to optimise the results. Considering that 
the sweep time of an EMG device screen is com-
monly adjusted to 5 msec/div or 10 msec/div, and 
a 100-msec trace provides an idea about motor 
unit action potential fi ring rates and morphology, 
we determined the length of EMG segments to be 
100 msec. Most previous studies also used 100-
msec segments [8]. The residual convolutional 
network architecture was similar to that of nEM-
Gnet in the study by Yoo et al. [8]. However, we 
preferred smaller sizes of convolutional fi lter ker-
nels to process high-frequency information. The 
design of the 1-D CNN-4-layer GRU model also 
contains architectural nuances. We estimated the 
number of units in the fi rst RNN layer by consid-
ering specifi c parameters of the motor unit action 
potentials. The approximate motor unit action 
potential duration varies between 5 and 15 msec; 
it is shorter in myopathy (1-5 msec) but longer in 
neuropathy (15-25 msec) [3]. As 245 units of RNN 
capture approximately 25 milliseconds, it could 
be adequate for processing all types of motor 
unit action potential morphologies.

Additionally, because high-frequency infor-
mation plays a crucial role in the discrimination 
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of myopathy, neuropathy, and standard motor unit 
action potentials, and GRU layers are specialised 
in learning time series patterns, the model was 
further optimised by omitting the maxpooling 
layer, which might cause losses in the high-fre-
quency information captured by the GRU units. 
In most studies, a flattened layer is used before 
GRU units. However, we did not use this due to its 
low accuracy rates in tests. Because the convo-
lution layer produces output data as several time 
series equal to the number of convolution fi lters, 
flattening it may cause some information to be 
lost in the time series processed by the GRU lay-
er, which could lead to low accuracy rates. 

The retrospective design of the study did not 
permit a standardised assessment of motor unit 
potential recruitment patterns. This limitation 
also led to the exclusion of acute neuropathies 
from the study, conditions that require analysis of 
recruitment patterns for an accurate understand-
ing [3]. When a muscle is slightly contracted, the 
smallest motor unit action potential fi rst starts 
fi ring, and its frequency is approximately 5-8 Hz 
at the beginning. By increasing the force, the fre-
quency increases by 3-5 Hz, then a second larger 
motor unit is recruited at <15 Hz [25]. By 50% of 
maximal voluntary contraction, almost all motor 
units are recruited in small limb muscles, and fur-
ther voluntary contraction rates could increase 
the fi ring frequency of motor unit action potentials 
up to 50 Hz. In large limb muscles, motor units are 
recruited at least 90% of maximal voluntary con-
traction, while muscle fi ring frequency reaches up 
to 30-40 Hz [26]. Thus, a motor unit action poten-
tial can be fi red one to fi ve times in small mus-
cles and one to four times in large muscles within 
a 100-msec period. Although this rate increases 
in myogenic muscle, the number of motor unit 
action potentials recruited reduces in neurogen-
ic muscle [3]. Finally, a wide variety of voluntary 
motor unit contraction rates have been success-
fully classifi ed using the proposed deep learning 
model with 245 hidden units, which can capture 
periods of approximately 25 milliseconds. Con-
sidering that patients may have poor cooperation 
in recruitment tasks in clinical practice, the high 
accuracy rate of the proposed model in classify-
ing neuromuscular disorders offers hope for the 
real-time implementation of the model. Neverthe-
less, standardisation of recruitment patterns, par-
ticularly for training neural network models, could 

both increase accuracy and help classify neuro-
pathic and myopathic pattern subtypes. 

We included a wide variety of small and large 
muscles in the limbs, hips, and shoulders in our 
study. The age of the subjects also ranged from 
12 to 80 years. Different limb muscles have 
slightly different ranges of amplitude, duration, 
or polyphasic rates [3]. Furthermore, with age-
ing, motor unit action potential morphology can 
also differ slightly in size, and action potentials 
with longer durations and higher amplitudes are 
observed in healthy older subjects [3], which may 
lead to lower accuracy rates in pattern recogni-
tion. Despite acquiring data recorded from vari-
ous muscles from a highly heterogeneous patient 
population, we achieved high accuracy rates 
using the proposed model. Although this situ-
ation may be helpful for the real-life implemen-
tation of the model, standardising the muscles 
could aid in muscle-specifi c assessments and 
increase accuracy. Studying only with the tibialis 
anterior muscle, Roy et al. [22] and Kamali et al. 
[24] achieved 100% accuracy.

After labelling the muscle according to the 
EMG report results, both artefacts and EMG sig-
nal segments that did not represent typical pat-
terns of labelled neuromuscular conditions were 
excluded. This approach may increase accu-
racy rates and could be considered a barrier to 
implementing the model for real-time use. How-
ever, the fact that most patients in the data set 
had acquired myopathy and radiculopathy, with 
patchy muscle involvement, particularly in some 
acquired myopathies and radiculopathies, could 
explain the standard motor unit action potential 
patterns in pathologic signal segments [3]. Label-
ling these segments as neuropathic or myopath-
ic would reduce the quality of training and result 
in low accuracy rates. However, there may still 
be some subtle patterns of the pathology that 
could not be discerned by an expert but could be 
detected with deep learning systems [27].

This study has certain limitations. The small 
sample size is a primary constraint, which may 
increase the risk of overfi tting. Additionally, the 
limited number of patients prevented the use of 
patient-based classifi cation and the application 
of an external validation data set, as referenced by 
de Jonge et al. [1]. Furthermore, we were unable 
to use an independent external validation set. 
The results cannot be generalised to the entire 
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neuromuscular disorder classifi cation because 
the patient population in our study was small and 
restricted to patients with radiculopathy, axonal 
nerve injury, and predominantly inflammatory 
myopathies. As a result, both the limited diversi-
ty of the neuromuscular disorders and the small 
size of the datasets reduce the generalizability 
of the results and increase the risk of overfi tting. 
Moreover, the real-time implementation of auto-
matic classifi cation of neuromuscular disorders 
requires the discrimination of motor unit action 
potentials, artefacts, needle insertion potentials, 
and resting state potentials. In a retrospectively 
designed clinical study, Hubers et al. [17] classi-
fi ed signal segments with artefacts, resting-state 
potentials, and motor unit action potentials with 
96% accuracy at the fi rst step, and then the clas-
sifi cation of motor unit action potentials was per-
formed. Our study focused solely on classifying 
motor unit action potentials. We were unable to 
assess different levels of recruitment due to the 
small dataset size and the retrospective design 
of the study. For this reason, having only reduced 
recruitment as a pathologic fi nding, acute neu-
ropathies were excluded. Therefore, assessing 
recruitment patterns in future studies would also 
improve real-life generalizability. 

The current fi ndings of this study are pre-
liminary. Future work will focus on increasing 
the number of patients for patient-based clas-
sifi cation and expanding the dataset to include 
a broader spectrum of pathologies, such as com-
mon genetic and inflammatory myopathies, motor 
neuron disease, and both acquired and genetic 
polyneuropathies. Additionally, plans include 
conducting multicenter studies to obtain external 
validation datasets and using labelling based on 
expert consensus, aiming to enhance the reliabil-
ity of the results. Ultimately, after developing deep 
learning models for recognising motor unit action 
potential morphology, artefacts, resting-state 
potentials, and recruitment patterns, the objective 
is to create real-time systems with high accuracy. 

Conclusion

Deep learning is actively used in most current 
studies for pattern recognition tasks. The auto-
matic feature extraction ability of deep learn-
ing tools reduces the complexity of the machine 

learning procedure. Showing good performance 
on time-series data, both 1D-CNN-4-layer GRU 
and residual convolutional neural network mod-
els show promising results on needle-EMG data 
in terms of neuromuscular disease classifi cation. 
However, more clinical studies with larger data-
sets are needed to validate the results for clinical 
application.

Disclosures

Data Availability Statement
The data that support the fi ndings of this study 
are available from the corresponding author upon 
reasonable request.

Ethical Approval 
This retrospective study was reviewed and 
approved by the Ethical Committee of Karadeniz 
Technical University on October 3, 2024 (Registry 
number: E-82554930-050.01.04-567570). 

Declaration of Competing Interest
The authors declare that they have no known 
competing fi nancial interests or personal rela-
tionships that could have appeared to influence 
the work reported in this paper.

Funding Sources
This research did not receive any specifi c grant 
from funding agencies in the public, commercial, 
or not-for-profi t sectors.

Declaration of Generative AI 
The authors declare that they did not use genera-
tive AI in the production of this manuscript.

CRediT authorship contribution statement
Isil Tatlidil: Conceptualisation, Data curation, For-
mal analysis, Investigation, Methodology, Software, 
Visualisation, Writing – original draft. Murat Ekinci: 
Methodology, Project administration, Resources, 
Supervision, Validation, Writing – review & editing. 
Cavit Boz: Data curation, Resources, Supervision, 
Validation, Writing – review & editing. 

References
De Jonge S, Potters W V, Verhamme C. Artifi cial 1. 
intelligence for automatic classifi cation of nee-
dle EMG signals: A scoping review. Clin Neurophys-



Journal of Medical Science 2025 December;94(4) 327

iol. 2024 Mar;159:41–55. https://doi.org/10.1016/j.
clinph.2023.12.134.
Rubin DI. Needle electromyography: Basic concepts. 2. 
Handb Clin Neurol. 2019 Jan 1;160:243–56. 
Preston DC, Shapiro BE. Electromyography and Neu-3. 
romuscular Disorders. 4th ed. Philadelphia: Elsevier; 
2021. 134–259 p. 
Kendall R, Werner RA. Interrater reliability of the 4. 
needle examination in lumbosacral radiculopathy. 
Muscle Nerve. 2006 Aug;34(2):238–41. https://doi.
org/10.1002/mus.20554.
Shen C, Nguyen D, Zhou Z, Jiang SB, Dong B, Jia X. 5. 
An introduction to deep learning in medical phys-
ics: advantages, potential, and challenges. Phys 
Med Biol. 2020 Mar 3;65(5):05TR01. https://doi.
org/10.1088/1361-6560/ab6f51.
Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, 6. 
Campbell JP. Introduction to machine learning, neu-
ral networks, and deep learning. Transl Vis Sci Tech-
nol. 2020 Feb 27;9(2):14. https://doi.org/10.1167/
tvst.9.2.14.
Caiafa CF, Sun Z, Tanaka T, Marti-Puig P, Solé-Casals 7. 
J. Special Issue ‘Machine Learning Methods for Bio-
medical Data Analysis’. Sensors (Basel). 2023 Nov 
24;23(23). https://doi.org/10.3390/s23239377.
Yoo J, Yoo I, Youn I, Kim SM, Yu R, et al. Residual one-8. 
dimensional convolutional neural network for neu-
romuscular disorder classifi cation from needle elec-
tromyography signals with explainability. Comput 
Methods Programs Biomed. 2022 Nov;226:107079. 
https://doi.org/10.1016/j.cmpb.2022.107079.
Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR. 9. 
Deep learning for healthcare applications based on 
physiological signals: A review. Comput Methods 
Programs Biomed. 2018 Jul;161:1–13. https://doi.
org/10.1016/j.cmpb.2018.04.005.
Nodera H, Osaki Y, Yamazaki H, Mori A, Izumi Y, Kaji R. 10. 
Deep learning for waveform identifi cation of resting 
needle electromyography signals. Clin Neurophysiol. 
2019 May;130(5):617–23. https://doi.org/10.1016/j.
clinph.2019.01.024. 
Nam S, Sohn MK, Kim HA, Kong HJ, Jung IY. Devel-11. 
opment of artifi cial intelligence to support nee-
dle electromyography diagnostic analysis. Healthc 
Inform Res. 2019;25(2):131. https://doi.org/10.4258/
hir.2019.25.2.131.
Sengur A, Akbulut Y, Guo Y, Bajaj V. Classifi cation of 12. 
amyotrophic lateral sclerosis disease based on con-
volutional neural network and reinforcement sam-
ple learning algorithm. Health Inf Sci Syst. 2017 Dec 
30;5(1):9. https://doi.org/10.1007/s13755-017-0029-6.
Zhang Z, He C, Yang K. A novel surface electromy-13. 
ographic signal-based hand gesture prediction 
using a recurrent neural network. Sensors. 2020 Jul 
17;20(14):3994.  https://doi.org/10.3390/s20143994.
Das S, Tariq A, Santos T, Kantareddy SS, Baner-14. 
jee I. Recurrent neural networks (RNNs): Architec-
tures, training tricks, and introduction to influen-
tial research. Newyork: Humana; 2023. https://doi.
org/ 10.1007/978-1-0716-3195-9_4.
Keleş AD, Turksoy RT, Yucesoy CA. The use of non-15. 
normalized surface EMG and feature inputs for 

LSTM-based powered ankle prosthesis control algo-
rithm development. Front Neurosci. 2023;17:1158280. 
https://doi.org/10.3389/fnins.2023.1158280.
Aviles M, Alvarez-Alvarado JM, Robles-Ocampo JB, 16. 
Sevilla-Camacho PY, Rodríguez-Reséndiz J. Opti-
mizing RNNs for EMG Signal Classifi cation: A novel 
strategy using grey wolf optimization. bioengineering 
(Basel). 2024 Jan 13;11(1).  https://doi.org/10.3390/
bioengineering11010077.
Hubers D, Potters W, Paalvast O, de Jonge S, Doelka-17. 
har B, Tannemaat M et al. Artifi cial intelligence-based 
classifi cation of motor unit action potentials in real-
world needle EMG recordings. Clinical Neurophysiol-
ogy. 2023 Dec;156:220–7. https://doi.org/10.1016/j.
clinph.2023.10.008.
Khademi Z, Ebrahimi F, Kordy HM. A review of criti-18. 
cal challenges in MI-BCI: From conventional to deep 
learning methods. J Neurosci Methods. 2023 Jan 
1;383:109736.  https://doi.org/10.1016/j.jneumeth.
Yang S, Yu X, Zhou Y. LSTM and GRU Neural Network 19. 
Performance Comparison Study: Taking Yelp review 
dataset as an example. In: 2020 International Work-
shop on Electronic Communication and Artifi cial 
Intelligence (IWECAI). IEEE; 2020. p. 98–101. 
Rivas F, Sierra-Garcia JE, Camara JM. Comparison of 20. 
LSTM- and GRU-Type RNN networks for attention and 
meditation prediction on raw EEG data from low-cost 
headsets. Electronics (Basel). 2025 Feb 12;14(4):707. 
https://doi.org/10.3390/electronics14040707.
Samanta K, Chatterjee S, Bose R. Neuromuscular 21. 
disease detection based on feature extraction from 
time–frequency images of EMG signals employing 
robust hyperbolic Stockwell transform. Int J Imaging 
Syst Technol. 2022 Jul 25;32(4):1251–62. https://doi.
org/10.1002/ima.22709.
Roy SS, Dey D, Karmakar A, Roy AS, Ashutosh K, 22. 
Choudhury NR. Detection of abnormal electromy-
ograms employing DWT-based amplitude enve-
lope analysis using Teager energy operator. Int J 
Biomed Eng Technol. 2022;40(3):224. https://doi.
org/10.1504/ijbet.2022.126493
Dubey R, Kumar M, Upadhyay A, Pachori RB. Automated 23. 
diagnosis of muscle diseases from EMG signals using 
an empirical mode decomposition-based method. 
Biomed Signal Process Control. 2022 Jan 1;71:103098. 
https://doi.org/10.1016/j.bspc.2021.103098
Kamali T, Stashuk DW. Electrophysiological muscle 24. 
classifi cation using multiple instance learning and 
unsupervised time and spectral domain analysis. 
IEEE Trans Biomed Eng. 2018 Nov;65(11):2494–502. 
https://doi.org/10.1109/TBME.2018.2802200. 
Nandedkar SD, Barkhaus PE, Stålberg E V. Motor unit 25. 
recruitment and fi ring rate at low force of contrac-
tion. Muscle Nerve. 2022 Dec;66(6):750–6. https://
doi.org/10.1002/mus.27737.
Masakado Y. Motor unit fi ring behavior in man. 26. 
Keio J Med. 1994 Sep;43(3):137–42. https://doi.
org/10.2302/kjm.43.137.
Van Putten MJAM, Olbrich S, Arns M. Predicting sex 27. 
from brain rhythms with deep learning. Sci Rep. 2018 
Feb 15;8(1):3069. https://doi.org/10.1038/s41598-
018-21495-7.


