REVIEW PAPER

JMS Journal of Medical Science

Efficacy and safety of intravenous iron therapy in heart failure patients with iron deficiency: a systematic review and meta-analysis of randomized controlled trials

Mohammad Tanashat

Faculty of Medicine, Yarmouk University, Irbid, Jordan https://orcid.org/0000-0002-8819-1803

Mohamed Abouzid

Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Poznań, Poland

b https://orcid.org/0000-0002-8917-671X

Corresponding author: mabouzid@outlook.com

Yehya Khlidj

Faculty of Medicine, Algiers University, Algiers, Algeria https://orcid.org/0000-0002-3448-9946

Mohamed Abuelazm

Faculty of Medicine, Tanta University, Tanta, Egypt https://orcid.org/0000-0003-2047-2235

Alaa Ramadan

Faculty of Medicine, South Valley University, Qena, Egypt

Obieda Altobaishat

Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan https://orcid.org/0000-0001-7213-0507

Aya Aboutaleb

Faculty of Medicine, Zagazig University, Zagazig, Egypt
b https://orcid.org/0000-0001-6979-9867

Irfan Ullah

Department of Internal Medicine, Kabir Medical College, Gandhara University & Khyber Teaching Hospital, Peshawar, Pakistan

b https://orcid.org/0000-0003-1100-101X

Basel Abdelazeem

Department of Cardiology, West Virginia University, Morgantown, West Virginia, USA

o doi: https://doi.org/10.20883/medical.e1183

Keywords: iron, heart failure, deficiency, review, meta-analysis

Received 2024-12-09 Accepted 2024-01-08 Published 2024-01-11

How to Cite: Tanashat M, Abouzid M, Khlidj Y, Abuelazm M, Ramadan A, Altobaishat O, et al. Efficacy and safety of intravenous iron therapy in heart failure patients with iron deficiency: a systematic review and meta-analysis of randomized controlled trials. Journal of Medical Science. 2024 December;93(4);e1183. doi:10.20883/medical.e1183

© 2024 by the author(s). This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC) licencse. Published by Poznan University of Medical Sciences

ABSTRACT

Introduction. Heart failure is a diverse life-threatening condition with complex biology and demanding therapeutic goals. Even when anemic patients are excluded, up to 59% of heart failure patients have low ferritin levels, making them especially vulnerable to iron deficiency. We aim to explore the benefits and safety of intravenous iron therapy among patients with heart failure and iron deficiency.

Material and methods. We have searched the literature on PubMed (MEDLINE), Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science (WoS), and EMBASE until 31st August, 2023. We

used RevMan V. 5.4 to pool dichotomous data using a risk ratio (RR) with a 95% confidence interval (CI). This review has been registered and published in PROSPERO (CRD42023471419)

Results. Fourteen randomized controlled trials with 6,626 patients were included. The intravenous iron group was favored over the control group in reducing hospital admissions for heart failure (first event) (RR= 0.83, 95% CI 0.71 to 0.97; p = 0.02) and (total events) (RR= 0.81, 95% CI 0.74 to 0.89; p < 0.0001). Also, the iron group had a 21% lower risk in terms of cardiovascular death and hospital admission for heart failure (number of events, rate per 100 patients in a year) (RR= 0.79, 95% CI 0.74 to 0.85; p < 0.00001). Concerning the adverse events, both ferric carboxymaltose and ferric derisomaltose showed a beneficial effect in reducing the cardiac disorder (RR= 0.81, 95% CI 0.76 to 0.87; p < 0.0001), and (RR= 0.82, 95% CI 0.71 to 0.95; p = 0.009), respectively.

Conclusions. Intravenous iron infusion in patients with heart failure has a favorable safety profile. It reduces total hospitalizations for heart failure and cardiovascular mortality, with no effect on all-cause mortality, cardiovascular mortality alone, or first-time hospitalization for heart failure.

Introduction

Heart failure (HF) is a multifaceted, life-threatening syndrome with a complex pathophysiology and challenging management goals. HF is a clinical syndrome characterized by symptoms and/or signs resulting from structural and/or functional cardiac abnormalities. This condition is confirmed by elevated levels of natriuretic peptides and/or objective evidence of pulmonary or systemic congestion. [1]. In 2017, The Global Burden of Disease report stated that 64.3 million people live with HF worldwide [2]. According to more recent estimates, one to three percent of individuals in low-income nations are believed to have HF. However, this incidence is expected to rise due to advancements in both diagnosis and treatment options that extend the lives of HF patients. In contrast, the incidence of HF has steadily declined over the past few decades, with an estimated 1-20 cases per 1,000 individuals identified annually [3].

Even after excluding anemic individuals, up to 59% of HF patients exhibit low ferritin levels, rendering them particularly susceptible to iron deficiency [4]. While the precise etiology of iron deficiency remains elusive, it has been suggested that increased iron depletion (due to gastrointestinal bleeding), reduced iron intake, absorption, and systemic bioavailability may contribute to the development of the disease [4]. It is crucial to note that iron deficiency in HF patients can manifest as either absolute (total body iron is decreased) or functional (total body iron is normal or increased). In the latter form, iron becomes sequestered in storage tissues (such as the liver), transferring insufficient amounts to the myocardium to meet its needs [5].

The activation of the neuroendocrine system can downregulate the messenger ribonucleic acid (mRNA) expression of Transferrin Receptor 1, leading to increased secretion of aldosterone and norepinephrine. Consequently, this downregulation can hinder iron uptake by cardiomyocytes [6]. The insufficient supply of iron to the myocardium gives rise to a condition known as myocardial iron deficiency, characterized by poor mitochondrial structure and function, oxidative stress, and increased detrimental cardiac remodeling [7]. Regardless of whether the iron deficiency is absolute or functional, it is associated with a poor prognosis in HF and has been demonstrated to be a robust and independent predictor of mortality [8].

Therefore, studies have aimed to evaluate the effectiveness of intravenous (IV) iron therapy in improving the condition of HF patients with iron deficiency. Among these, a multicenter randomized controlled trial (RCT) known as the CON-FIRM-HF study, published in 2015, demonstrated the superiority of IV ferric carboxymaltose over placebo in ameliorating several outcomes, including functional capacity, symptoms, quality of life, martial deficiency, and hospitalization risks [9]. Other RCTs, such as the AFFIRM-AHF study, found that IV ferric carboxymaltose effectively lowers the risk of HF hospitalization among stabilized patients with iron deficiency and left ventricular ejection fraction < 50% after discharge from acute episodes, later corroborating these findings [10].

However, some results were not as positive. For example, the recent HEART-FID trial found no statistically significant difference in a hierarchical endpoint including mortality, HF hospitalizations, and six-minute walk distance between ambulatory HF patients with reduced ejection fraction and iron deficiency who took either ferric carboxymaltose or placebo [11], narrowly missing its prespecified target despite the large sample size.

In light of the ongoing controversy and inconsistency in the existing literature, we undertook a comprehensive systematic review and meta-analysis to evaluate the entirety of data derived from RCTs concerning the efficacy and safety of intravenous iron therapy in patients with HF and iron deficiency. The findings from our study hold substantial therapeutic implications.

Methods.

Protocol Registration

This systematic review and meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRIS-MA) statement [12] and the Cochrane Handbook for systematic reviews and meta-analyses [13]. The review was registered and published in PROSPERO on 10th November 2023 under the ID CRD42023471419.

Data Sources & Search Strategy.

We have searched the literature on PubMed (MEDLINE), Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science (WoS), and EMBASE until 31st August 2023. We adjusted the search terms and keywords for each database; the results are presented in (**Table S1**).

Eligibility Criteria and Study Selection.

We included studies that followed the following PICOS criteria:

- Population (patients with HF and iron deficiency, no age criterion);
- Intervention (IV iron);
- > Comparison (placebo or standard care);
- > Outcomes:
 - Primary outcomes are (cardiovascular mortality, all-cause mortality, Hospital admission for heart failure (first event),

hospital admission for heart failure (total event), cardiovascular death and hospital admission for heart failure (number of events, rate per 100 patients in a year), hospital admission for heart failure (number of events, rate per 100 patients in a year).

 Secondary outcomes included adverse events: cardiac disorder, gastrointestinal disorder, injection site condition, infection, nervous system disorder, respiratory, thoracic, or mediastinal disorder, vascular disorder, any adverse effect, any serious adverse event, any adverse event leading to withdrawal, abnormal lab test, vital signs, or physical finding. Studies included were parallel RCTs.

Papers that met any of the following criteria were excluded: (1) non-original studies (e.g., book chapters, reviews, comments, letters to the editor, guidelines); (2) any other study design except RCTs; (3) studies involving duplicate or overlapping datasets; (4) non-human and in vitro experiments; and (5) studies not reported in English.

Study Selection.

We utilized the Covidence web tool to conduct the review. After eliminating duplicates, all obtained records were independently assessed by four authors. During the initial eligibility criteria full-text screening, the full texts of the records were reviewed by four authors. Any disagreements were resolved through discussion and consensus with a senior author.

Data Extraction.

After acquiring the full texts of relevant publications, we conducted a pilot extraction to effectively organize the data extraction sheet. The Excel-based data extraction sheet is divided into three sections.

The first part encompasses the summary characteristics of the included studies, such as the name of the first author, year of publication, country, follow-up period, population, iron preparation, comparator, iron dosing strategy, definition of iron deficiency, inclusion criteria, and primary outcome.

The second part consists of baseline information about the participants, covering race, The New York Heart Association (NYHA) class, age, gender, N-terminal prohormone of brain natriuretic peptide (NT-proBNP), B-type natriuretic peptide (BNP), left ventricular (LV) ejection fraction, 6-minute walk test distance (6MWT), systolic and diastolic blood pressure, hemoglobin, serum ferritin, transferrin saturation, estimated glomerular filtration rate (eGFR), phosphorus, hospital admissions for heart failure, de novo (new) hospital admissions for heart failure, comorbidities (atrial fibrillation (AF), acute coronary syndrome (ACS), hypertension, diabetes, chronic kidney disease (CKD), anemia, dyslipidemia), and medications (implantable cardioverter-defibrillator (ICD), cardiac resynchronization therapy (CRT), angiotensin-converting enzyme (ACE) inhibitor, angiotensin II receptor blocker (ARB), sacubitrilvalsartan, ACE inhibitor, ARB, beta-blocker, mineralocorticoid receptor antagonist (MRA), digoxin, sodium-glucose cotransporter-2 (SGLT2) inhibitor, loop diuretic, insulin, and any other glucose-lowering medication). Finally, the third part covers outcomes data. Four reviewers (A.R., O.A., A.A., and I.U.) were responsible for data extraction, and any discrepancies were resolved through discussion and agreement with a senior author.

Risk of Bias and Certainty of Evidence.

Four reviewers (A.R., O.A., A.A., and I.U.) independently assessed the quality of the studies using the Cochrane RoB2 method [14]. Any disagreements were resolved through discussion with a senior author. Simultaneously, two reviewers (M.A. and B.A.) employed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria [15, 16] to assess the certainty of evidence. A consensus was reached to resolve any disagreements.

Statistical Analysis.

The statistical analysis was performed using RevMan v5.3 software (15). For dichotomous outcomes, we calculated the risk ratio (RR), and for continuous outcomes, we computed the mean difference (MD), both presented with a 95% confidence interval (CI) under the fixed-effects model. In cases of significant heterogeneity, we applied the random-effects model. Heterogeneity was assessed using the Chi-square and I-square tests; the Chi-square test determined the presence of heterogeneity, and the I-square test gauged its extent. As per the Cochrane Handbook (chapter nine) [17], an I-square exceeding 50% signified significant heterogeneity, while a Chi-square test with an alpha level below 0.1 indicated considerable heterogeneity.

We performed a subgroup analysis based on (i) chronic or acute heart failure and (ii) type of iron preparation. Furthermore, trial sequential analysis was employed to validate desired or undesired intervention effects by analyzing data from ongoing trials. Sensitivity analysis was also conducted to assess the impact of alternative assumptions or analyses on the pre-specified research questions. In essence, sensitivity analysis aims to evaluate the validity and certainty of the primary methodological or analytic strategy. Finally, if at least 10 studies were reported in the outcome, the asymmetry analysis was performed to determine the publication bias by visual inspection of the funnel plot of the studies, and Egger's test confirmed the results [18]. A p-value ≤ 0.05 was considered statistically significant for all tests.

Results

Study selection

Our database search yielded 2740 studies. After duplicate removal, we screened the remaining 1225 Studies, and only 35 were eligible for full-text retrieval. Only 14 studies met our inclusion criteria and were included in our review [9–11, 19–29] (**Figure 1**).

Study characteristics

Our included studies reported the data of a total of 6,626 patients who were assigned to IV iron as the intervention group (3,408 patients) or the control group (3,218 patients). The mean age of the Intervention group was 68.4 ± 4.95 , and 68.1 ± 5.89 for the control group. Nine studies were single-centered, while the rest were multicenter studies. The follow-up duration ranged from two weeks to 2.7 years. The included studies' summary and detailed patient baseline characteristics are described in (**Table 1** and **2**), respectively [9–11, 19–29].

Risk of bias

The risk of bias assessment for each outcome is depicted in **Figure 2**. Overall, most included stud-

ies exhibited a low risk of bias across all assessed domains. Notably, two studies raised some concerns regarding bias (Karla et al. 2022: the data leading to this result was not analyzed as per the pre-specified analysis plan; Ponikowski et al. 2015: there is no evidence that the result was unaffected by missing outcomes, and the missingness in the outcome could be dependent on its true value). A GRADE evidence profile outlines The certainty of evidence (**Table 3**).

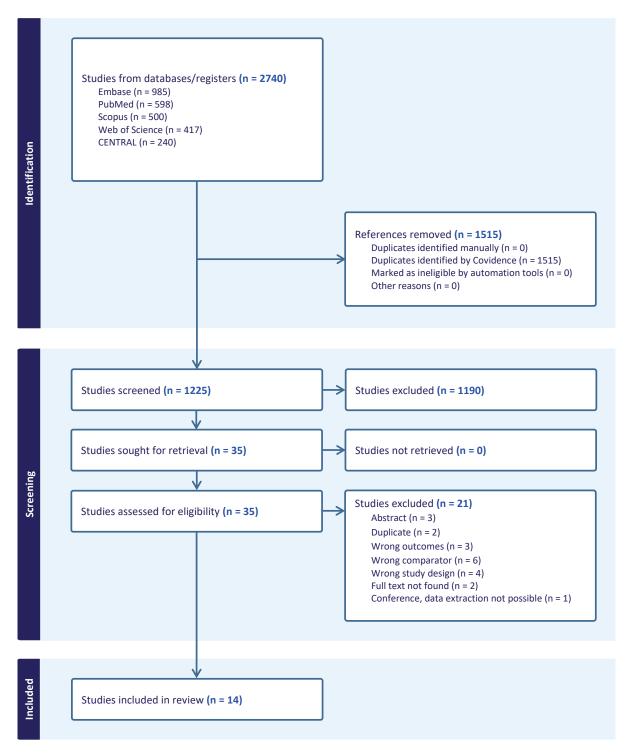


Figure 1. PRISMA chart showing the research strategy and inclusion and exclusion criteria.

				Risk of bia	s domains		
		D1	D2	D3	D4	D5	Overall
	Anker et al 2009	+	+	+	+	+	+
	Caravita et al 2022	+	+	+	+	+	+
	Charles-Edwards et al 2019	+	+	+	+	+	+
	Karla et al 2022	+	+	+	+	-	-
	Marcusohn et al 2022	+	+	+	+	+	+
	Martens et al 2021	+	+	+	+	+	+
Study	Mentz et al 2023	+	+	+	+	+	+
Str	Nunez et al 2020	+	+	+	+	+	+
	Okonko et al 2008	+	+	+	+	+	+
	Ponikowski et al 2015	+	+	-	+	+	-
	Ponikowski et al 2021	+	+	+	+	+	+
	Toblli je et al 2007	+	+	+	+	+	+
	Veldhuisen et al 2017	+	+	+	+	+	+
	Yeo et al 2017	+	+	+	+	+	+
		D2: Bias du D3: Bias du D4: Bias in	rising from the ue to deviation ue to missing measuremer selection of t	ns from intend outcome data at of the outco	ded interventic a. ome.	JII.	ment Some concerns .ow
	Bias arising from the randomization	process					
Bia	s due to deviations from intended inter	ventions					
	Bias due to missing outco	ome data					
	Bias in measurement of the	outcome					
	Bias in selection of the report	ed result					
	Overall risk			1			
		0'	%	25%	50%	75%	10
				Low	risk Som	e concerns	

Figure 2. Risk of bias assessment is represented in traffic light and summary plots according to the Cochrane risk-of-bias tool, created using robvis.

339

Primary outcome	Myocardial iron content	Change in absolute pVO2 (ml/ min) from baseline to week 18	Change in six-minute walk test	HF Hospitalizations and CV Death	NT-pro-brain natriuretic pep- tide (NT-proBNP) and C-reactive protein (CRP) levels in a group of anemic patients with chronic heart failure (CHF) receiving intravenus iron ther- apy.	Effect of IV ferric carboxymalt- ose on exercise capacity, phys- ical functioning and quality of life in patients with iron defi- ciency and chronic heart fail- ure.	Change in 6MWT distance over time
Inclusion criteria	 Patients with ambulatory chronic heart failure Older than 18 years Patients in NYHA class II-III on optimal background therapy Elevated natriuretic peptides levels Elevated natriuretic spetides levels Iron deficiency defined as: serum ferritin level <100 µg/L informed consent for participation in the study 	 Age ≥ 21 years. symptomatic CHF (New York Heart Association [NYHA] functional class II or III Hb concentrations < 12.5 g/dl (anemic group) or 12.5 to 14.5 g/dl (nonanemic group) Ferritin < 100 µg/ Ior between 100 g/l and 300 µg/l left vertricular ejection fraction ≤ 45% 	 Iron deficient subjects with stable chronic heart failure Reduced left ventricular ejection fraction Capable of completing 6-minute walk test. At least 18 years of age. 	 Hospitalised for an episode of acute heart failure (AHF) Subject is iron deficient defined as serum ferritin <100 ng/mL. Left ventricular ejection fraction <50% Male or female aged ≥18 years old. 	 LV ejection fraction (EF) ≤ 35% New York Heart Association (NVHA) functional class II to IV anemia with an iron deficit defined by Hb < 12.5 g/dl 	 Iron deficient subjects with stable chronic heart failure (CHF) (NYHA II-III) on optimal background therapy for CHF At least 18 years of age and 	 Patients hospitalized for HF Capable of completing the 6MWT. Screening TSAT <20%, Serum Ferritin <300 ng/mL and Hbs14 g/dL At least 21 years of age
Definition of iron deficiency	ID (serum ferritin <100 lg/L [abso- lute ID] or 100- 299 lg/L with transferrin satu- ration [TSAT] <20%	Hb concentra- tions < 12.5 g/dl	Serum ferritin level ,100 ng/ mL, or between 100 and 300 ng/mL	Iron deficient de- fined as serum ferritin <100 ng/ mL or 100 ng/mL ≤ serum ferritin ≤229 ng/mL if TSAT <20%	Anemia with an iron deficit de- fined by Hb < 12.5 g/dl for men and < 11.5 g/dl for women.	Patients with Hb ≤14 g/dL	Serum ferritin <300 ng/mL if transferrin satu- ration is <20%)
Iron defi- ciency	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Follow- up	(meen) 30 days	18 weeks	24 weeks	52 weeks	6 months	24 weeks	12 weeks
Country	Spain	UK & Poland	9 countries	121 sites in Europe, South America, and Singapore	Argentina	Netherlands	Singapore
Iron dosing strate- gy	20-mL perfusion (equivalent to 1000 mg of iron)	100mg at 0, 4, 8, 12 and 16 weeks	FCM doses were between 500 and 2000 mg iron FCM at each of Weeks 12, 24, and 36.	intravenously shortly before dis- charge and the second dose was administered at week 6 (visit three).	200 mg weekly	Infusions of 10 or 20 mL and Subjects will re- ceive ferric car- boxymatose intra- venously on Day 0, veek 6, and Week 12	1000mg intrave- nous Ferric Carboxymaltose
Comparison Iron preparation Iron dosing gy	Ferric Carboxymaltose	Iron sucrose	Ferric Carboxymaltose	Ferric Carboxymaltose	Iron sucrose	Ferric Carboxymaltose	Ferric Carboxymaltose
Comparison	Placebo	Control	Placebo	Placebo	Placebo	Placebo	Placebo
Population (Patients with stable chronic HF, left ven- tricular ejec- tion fraction (LEF) < 50%, and ID (serum ferritin <100 Jg/L	Anemic and Nonanemic Patients with Symptomatic Chronic Heart Failure and Iron Deficiency	Stable ambu- latory HF pa- tients	Patients With Acute Heart Failure	Anemic Patients with Chronic Heart Failure and Renal Insufficiency	Patients with systolic HF (left ventricu- lar ejection fraction ≤45%)	Asian patients with heart fail- ure (HF)
Year	2020	2008	2015	2021	2007	2017	2018
Study	Nunez et al	Okonko et al	Ponikowski et al	Ponikowski et al	Toblli je et al	Veldhuisen et al	Yeo et al
Ref.	[20]	[21]	[6]	[01]	[22]	[23]	[24]

Table 1. The summary of the included studies.

Primary outcome	Patient Global Assessment and NYHA functional class, both at week 24.	Chemoreflex sensitivity cardio- respiratory sleep study, symp- tom assessment and cardio- pulmonary exercise test	The primary end point of PCr t 1/2 at 2 weeks.	All hospital admissions for heart failure and cardiovascular death	Recurrent hospital admissions for heart failure and cardiovas- cular death.	Change in LVEF from baseline to 3-month.	Change in distance during a 6-minute walk test (6MWT) from baseline to 12 and 24 weeks after initial assessment.
Inclusion criteria	 patients who had chronic heart failure of New York Heart Association (NYHA) class II or III Left ventricular ejection fraction of 40% or less a hemoglobin level at the screening visit between 95 and 135 g per liter, and iron deficiency. 	 consecutive clinically stable patients with chronic HF that presented a left ventricular ejection fraction 445%. anemia (haemoglobin 9–12 g/dl in women or 9–13 g/dl in men) inon deficiency (serum ferritin <100 µg/L). 	 Age ≥30 years stable symptomatic chronic HF (New York Heart Association [NHA] III and left ventricular ejection Association [LVEF] ≤45%. Use of optimal HF drugs for ≥4 weeks without dose changes. 	 Adults ≥18 years with heart failure left ventricular ejection fraction of 40% or less. hemoglobin level greater than 9.0 g per deciliter. 	 Aged 18 years or older, with new or established symptomatic heart failure, Evidence of iron deficiency Left ventricular ejection fraction of 45%. 	 - Aged >_18 years, (ii) had - Stable heart failure at least 4 weeks - Received GR1 as part of their treatment plan for HFrEF - Association (NYHA) class >_II - Had iron deficiency 	 Hemoglobin levels of 8–14 mg/dL on admission. Ferritin levels ,100 ng/mL or ferritin 100–300 ng/mL with transferrin saturation N-ferminal pro-B- N-terminal pro-B- type natriuretic peptide (NT-proBNP) level 300 pg/mL. Treatment with IV loop diuretics.
Definition of iron deficiency	Serum ferritin level < 100 µg per liter when the transferrin satu- ration was <20%.	Increase in ferri- tin, transferrin saturation, hep- cidin, and by a re- duction of solu- ble transferrin re- ceptor.	1	Ferritin level of <100 ng per milli- liter or a level of 100 to 300 ng per milliter with a transferrin satu- ration of <20%)	Iron deficiency (serum ferritin <100 µg/L or transferrin satu- ration <20%)	Defined as a se- rum ferritin <100 ng/mL or serum ferritin betwen 100 and 300 ng/ mL if transferrin saturation (TSAT) was <20%.	Ferritin levels ,100 ng/mL or ferritin 100–300 ng/mL with transferrin satu- ration ,20%.
Iron defi- ciency	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Follow- up (week)	24 weeks	2 weeks	2 Weeks	2:7 years (IQR 1·8- 3·6).	12 months	3 months	24 weeks
Country	Argentina, Czech Republic, Greece, Italy, Norway, Poland, Romania, Russia, Spain, Ukraine, and Germany	Italy	United Kingdom	United Kingdom	USA, Canada, NewZealand	Belgium	Palestine
Iron dosing strate- gy	4 ml weekly then every 4 weeks	Intravenous ferric carboxymaltose or saline placebo was administered every 3 weeks.	Iron (III) isomalto- side 1000 added to 100 mL of sterile 0.9% saline for in- fusions.	Intravenous ferric denisomatt- ose doses depend on the body weight range	Dosing was weight-based; two doses separated by 7 days.	Calculated based on screened weight.	Patients in the treatment group received 3–5 doses of IV SGFC 125 mg.
Comparison Iron preparation	IV Ferric Carboxymaltose	IV ferric car- boxymaltose	Iron Isomaltoside	Intravenous fer- ric derisomalt- ose	IV Ferric Carboxymaltose	IV Ferric Carboxymaltose	IV Sodium Ferric Gluconate Complex
Comparison	Placebo	Placebo	Placebo	Usual care	Placebo	Standard care	Optimal medical therapy
Population	Patients who had chronic heart failure, left ventricular ejection frac- tion	Patients with heart failure, reduced left ventricular ejection frac- tion, anemia	Patients of chronic Heart Failure and Iron Deficiency	Patients of heart failure with iron defi- ciency	Patients of Heart Failure with Iron Deficiency	Symptomatic HFrEF patients with iron defi- ciency and a persistently reduced left ventricular ejection frac- tion	Patients With Iron Deficiency Hospitalized due to Acute Heart Failure
Year	2009	2022	2019	2022	2023	2021	2022
Study	Anker et al. (FAIR-HF)	Caravita et al.	Charles- Edwards et al. II)	Karla et al. (IRONMAN)	Mentz et al. (HEART- FID)	Martens et al. (IRON- CRT)	Marcusohn et al.
Ref.	[25]	[26]	[27]	[28]	[[1]	[29]	[61]

Study	Nunez et al.	Okonko et al.	Ponikowski et al.	Toblli et al.	Ponikowski et al	Veldhuisen et al.	Yeo et al.	Anker et al. (FAIR-HF)	Caravita et al.	Charles-Edwards et al. (FERRIC-HF II)	Karla et al. (IRONMAN)	Mentz et al. (HEART-FID)	Martens et al. (IRON-CRT)	Marcusohn et al.
Year	2020	2008	2015	2007	2021	2017	2018	2009	2022	2019	2022	2023	2021	2022
Race (FE/Control)		Caucasian 21(88%)	White 149(99%)		White 528 Asian 26 Other 4		Chinese 10 Indian 3 Malay 10 Other 1	White 303(99.7%)		White 17(81%)	White 519 Black 12 Asian 35 Other 3	White 1324 Black 162 Asian 19 Other 27		
		Caucasian 10(91%)	White 150(99%)		White 523 Asian 22 Other 5		Chinese 15 Indian 4 Malay 6 Other 0	White 155(100%)		White 14(74%)	White: 524, Black: 7, Asian: 31, Other: 6	White: 1325, Black: 160, Asian: 21, Other: 27		
NYHA	II,II	II,II	II,II		1, 11, 111, 1V	II,II		II, II	=	=	II, III, IV	II, III, IV	II, III	
N	27/26	24/11	150/151	20/20	558/550	86/86	24/25	304/155	38/20	21/19	569/568	1532/1533	37/38	18/16
Age	71.5(10.2)/ 72.3(9.4)	64(14)/ 62(11)	68.8(9.5)/ 69.5(9.3)	76(7)/ 74(8)	71.2(10.8)/ 70.9(11.1)	63(12)/ 64(11)	61.1(10.8)/ 64(10)	67.8(10.3)/ 67.4(11.1)	(01)17 (01)17	70(12)/62(13)	73.33(9.96)/ 73.23(8.92)	68.6(10.9)/ 68.6(11.2)	72(12)/ 73(9)	70.07(9.81)/ 75.67(9.75)
Male	21(27)/ 19(26)	17(24)/ 8(11)	83(150)/ 77(151)		314(558)/ 300(550)	60(86)/ 69(86)	18(24)/ 20(25)	145(304)/ 70(155)	30(38)/ 16(20)	16(21)/13(19)	427(569)/ 410(568)	1026(1532)/ 1002(1533)	26(37)/ 25(38)	12(18)/ 11(16)
BMI (kg/m2)		26(5)/ 28(5)	28.3(4.6)/ 29.1(5.7)	28.7(3.3)/ 29(3.4)	28.1(5.6)/ 28(5.7)	27.5(5)/ 26.9(4.4)28		28(4.8)/ 28.1(5.1)	26(4.6)/ 26.8(5.2)	29(4)/30(7)	28.6(5.9)/ 28.5(5.8)		27(5)/ 27(5)	
NYHAII	24(27)/ 26(26)	13(24)/ 6(11)	80(150)/ 91(151)		255(558)/ 240(550)	61(86)/ 54(86)		53(304)/ 29(155)		9(21)/10(19)	328(569)/ 320(568)	797(1532)/ 820(1532)	22(37)/ 19(38)	
NYHA III	3(27)/ 0(26)	11(24)/ 5(11)	70(150)/ 60(151)		272(558)/ 277(550)	25(86)/ 32(86)		251(304)/ 126(155)			230(569)/ 238(568)	711(1532)/ 692(1532)	15(37)/ 19(38)	
NYHAIV					16(558)/ 22(550)						11(569)/ 10(568)	22(1532)/ 19(1532)		
NT-proBNP (pg/mL)	1932(1451.1)/ 1630(1299.6)		2511(5006)/ 2600(4555)	255.9(124.6)/ 267.5(114.9)	5217.3(3974)/ 5388(4392.7)	1576/ 1469				1261.7(1438.2)/ 507.67(519.83)		1752.4(1842.4)/ 1672.5(1612.9)	1831(2057.6)/ 1525(1107.1)	
BNP (pg/mL)			772(995)/ 770(995)		1195(678.6)/ 1320.7(856.3)	491/ 460			638(798)/ 549(490)					8707.7(7689.8)/ 4166.7(4199)
LVEF	39.5(9)/ 37.3(8.6)	30(7)/ 29(6)	37.1(7.5)/ 36.5(7.3)		32.6(9.6)/ 32.7(10)	33(9)/ 31(8)	38.8(17.5)/ 33.2(14.8)	31.9(5.5)/ 33(6.1)	35(7)/ 35(8)	37(8)/ 37(8)	31.33(8.9)/ 33(8.9)	30.8(7)/ 30.6(7.3)	33(8)/ 34(7)	31.67(28.15)/ 42(24.38)
6-min walk test distance	272(48.5)/ 281(89.41)		288(98)/ 302(97)	192.3(60.9)/ 190.7(56.1)			252.4(122.7)/ 242.6(66.8)	274(105)/ 269(109)		324(79)/ 313(67)		273.9(109.7)/ 274.7(109.4)		216.3(82.78)/ 224.93(96.56)
SBP (mm Hg)	119.3(18.)/ 128(25.9)	120(22)/ 116(18)	125(14)/ 124(13)	139.7(8.2)/ 138.8(8.3)	119.8(15.2)/ 119.7(15.6)			126(15)/ 126(15)		124(16)/ 122(17)	119(19.3)/ 119.33(20.1)		121(15)/ 115(15)	
DBP (mm Hg)		(6)02 (6)02	75(8)/ 75(8)	74.4(9.6)/ 73.4(7.5)	72.6(10.3)/ 71.9(9.9)			77(9)/ 76(10)		73(10)/ 71(14)				
Hemoglobin (g/dl)	12.8(1.2)/ 13.6(1.49)	12.6(1.2)/ 12.2(1)	12.37(141)/ 12.42(1.3)	10.3(0.6)/ 10.2(0.5)	12.3(1.6)/ 12·1(1.6)	12.9(1.3)/ 13(1.5)	11.6(1.9)/ 13.1(1.3)	11.9(1.3)/ 11.9(1.4)		130(15)/ 128(20)	12.(1.2)/ 12.1(1.3)	12.6(1.4)/ 12.5(1.4)	13.3(1.2)/ 13.1(1.3)	11.73(1.36)/ 11.36(1.86)
Serum ferritin	85(54.8)/ 61.6(71.3)	62(37)/ 88(62)	57(48.4)/ 57.1(41.6)	73(29.9)/ 70.6(21.4)	83·9(62.2)/ 88.5(68.6)	48/ 53	91.4(80.4)/ 84.1(63.7)	52.5(54.5)/ 60.1(66.5)		34(25.5)/ 59(32.04)	55(41.6)/ 55(40.9)	56(47.3)/ 57.3(51.4)	75.3(52.4)/ 74.3(43.1)	102.33(92.5)/ 114(99.2)
Transferrin saturation	15.6(5.6)/ 15(8.2)	20(8)/ 21(9)	20.2(17.6)/ 18.2(8.1)	0.2(0.01)/ 0.2(0.01)	15.2(8.3)/ 14.2(7.5)	17.3/ 18.1	15.7(10.1)/ 13.9(6.8)	17.7(12.6)/ 16.7(8.4)		21(8)/ 18(10)	15.3(6.7)/ 14.7(6.7)	23.9(11.2)/ 23(10.3)	18.8(6)/ 19.4(7)	12.3(4.3)/ 13.6(5.4)
Ferritin <100 ng/mL			136(150)/ 133(151)		408(558)/ 380(550)									
eGFR <60 mL/min per 1·73 m²					292(558)/ 288(550)							288(801)/ 278(752)		

Study	Nunez et al.	Okonko et al.	Ponikowski et al.	Toblli et al.	Ponikowski et al	Veldhuisen et al.	Yeo et al.	Anker et al. (FAIR-HF)	Caravita et al.	Charles-Edwards et al. (FERRIC-HF II)	Karla et al. (IRONMAN)	Mentz et al. (HEART-FID)	Martens et al. (IRON-CRT)	Marcusohn et al.
Year	2020	2008	2015	2007	2021	2017	2018	2009	2022	2019	2022	2023	2021	2022
eGFR mL/min per 1·73 m²	60.2(16.7)/ 64.1(23.8)		66.4(21.7)/ 63.5(209)					63.8(21.2)/ 64.8(25.3)			57.2(12.2)/ 52.2(22.9)		56(25)/ 51(22)	
Atrial fibrillation	10(27)/ 14(26)		66(150)/ 73(151)		314(558)/ 305(550)	35(86)/ 41(86)		94(304)/ 44(155)	8(38)/ 7(20)	6(21)/ 4(19)	284(569)/ 250(568)	223(676)/ 240(664)		10(18)/ 5(16)
ACS			90(150)/ 90(151)		229(558)/ 213(550)	58(86)/ 55(86)	12(24)/ 13(25)		27(38)/ 13(20)		292(569)/ 285(568)			
Hypertension	22(27)/ 16(26)	12(24)/ 5(11)	130(151)/ 130(151)	2(20)/ 3(20)	468(558)/ 471(550)	62(86)/ 56(86)	21(24)/ 18(25)	243(304)/ 128(155)		13(21)/ 13(19)	297(569)/ 315(568)		32(37)/ 37(38)	17(18)/ 15(16)
Diabetes	15(27)/ 14(26)	8(24)/ 4(11)	38(150)/ 45(151)		227(558)/ 243(550)	26(86)/ 32(86)	15(24)/ 15(25)	93(304)/ 37(155)		10(21)/ 10(19)	252(569)/ 269(568)	246(694)/ 264(691)	17(37)/ 19(38)	11(18)/ 12(16)
CKD	8(27)/ 7(26)				222(558)/ 227(550)							178(424)/ 191(400)		12(18)/ 12(16)
Anemia	10(27)/ 6(26)				292(558)/ 312(550)					11(21)/ 9(19)		306(858)/ 339(900)		
Dyslipidaemia	18(27)/ 16(26)	7(24)/ 5(11)	98(150)/ 98(151)		300(558)/ 292(550)		20(24)/ 20(25)	144(304)/ 70(155)		7(21)/ 7(19)				16(18)/ 14(16)
ICD					67(558)/ 64(550)	25(86)/ 33(86)			23(38)/ 16(20)		91 (569)/ 72(568)	495(1532)/ 484(1532)		
CRT					33(558)/ 30(550)	11(86)/ 11(86)			12(38)/ 6(20)		125(569)/ 118(568)	230(1532)/ 232(1532)	23(37)/ 19(38)	
ACE inhibitor/ ARB						81(86)/ 77(86)		281(304)/ 141(155)		16(21)/ 17(19)		901(1532)/ 923(1530)	34(37)/ 33(38)	
Sacubitril-valsartan	10(27)/ 8(26)										130(569)/ 110(568)	461(1532)/ 448(1532)		
ACE inhibitor	7(27)/ 6(26)	18(24)/ 8(11)	116(150)/ 118(151)	19(20)/ 20(20)	293(558)/ 283(550)		11(24)/ 8(25)		21(38)/ 10(20)		271(569)/ 281(568)			
ARB	5(27)/ 4(26)	5(24)/ 2(11)	34(150)/ 37(151)	5(20)/ 4(20)	97(558)/ 100(550)		8(24)/ 5(25)		12(38)/ 5(20)		90(569)/ 113(568)			
Beta-blocker	25(27)/ 21(26)	20(24)/ 11(11)	133(150)/ 139(151)	20(20)/ 20(20)	453(558)/ 461(550)	84(86)/ 85(86)	24(24)/ 20(25)	262(304)/ 129(155)	34(38)/ 20(20)	18(21)/ 16(19)	500(569)/ 509(568)	1415(1532)/ 1418(1532)	37(37)/ 37(38)	
antimineralocorticoid		11(24)/ 6(11)			376(558)/ 352(550)	58(86)/ 62(86)	7(24)/ 10(25)		20(38)/ 11(20)		325(569)/ 307(568)	858(1532)/ 847(1532)	30(37)/ 29(38)	
Digoxin	1(27)/ 4(26)	6(24)/ 2(11)	29(150)/ 40(151)	13(20)/ 12(20)	83(558)/ 101(550)			46(304)/ 25(155)		6(21)/ 4(19)	70(569)/ 65(568)			
SGLT2 inhibitor											15(569)/ 14(568)	118(1532)/ 111(1532)		
Loop diuretic	25(27)/ 24(26)		132(150)/ 139(151)		483(558)/ 465(550)		21(24)/ 23(25)		34(38)/ 15(20)	14(21)/ 12(19)	458(569)/ 468(568)		20(37)/ 21(38)	
Insulin			18(150)/ 20(151)					27(304)/ 9(155)			80(569)/ 101(568)			
Other Glucose loweing medication								49(304)/ 22(155)	18(38)/ 9(20)		223(569)/ 239(568)			
Abbreviations: ACE-angiotensin-converting enzyme; ACS-acute coronary syndrome; CKD-chronic kidney disease; CRT-cardiac resynchronization therapy; DBP-diastolic blood pressure; ICD-implantable cardiovert-	ingiotensin-c	sonverting (enzyme; ACS-	acute coronar	ıry syndrome; C	KD-chronic	kidney disea	se; CRT-cardi	ac resynch	ronization thera	py; DBP-diastol	ic blood pressure	e ; ICD-implant	able cardiovert-

er-defibrillator; LVEF-left ventricle ejection fraction; SBP-systolic blood pressure; SGLT2-sodium-glucose transport protein 2. reported as median

Table 3. GRADE evidence profile.

			tainty asses						Summary of		
Participants (studies) Follow-up	Risk of bias	Inconsis- tency	Indirect- ness	Impre- cision	Publication bias	Overall certainty of evidence	Study eve With Placebo or Standard Care	ent rates (%) With IV Iron	Relative effect (95% CI)	Anticipated Risk with Placebo or Standard Care	absolute effects Risk difference with IV Iron
Cardiovascula	ar Mortalit	y									
6145 (6 RCTs)	not serious	not serious	not serious	not serious	none	⊕⊕⊕⊕ High	509/2994 (17.0%)	462/3151 (14.7%)	RR 0.90 (0.80 to 1.01)	170 per 1,000	17 fewer per 1,000 (from 34 fewer to 2 more)
All cause mor			_								
5281 (8 RCTs)	not serious	not serious	not serious	not serious	none	⊕⊕⊕⊕ High	376/2557 (14.7%)	336/2724 (12.3%)	RR 0.88 (0.78 to 1.01)	147 per 1,000	18 fewer per 1,000 (from 32 fewer to 1 more)
Hospital adm	ission for l	neart failure	(first event)							
2813 (5 RCTs)	not serious	not serious	not serious	not serious	none	⊕⊕⊕⊕ High	451/1326 (34.0%)	393/1487 (26.4%)	RR 0.85 (0.77 to 0.95)	340 per 1,000	51 fewer per 1,000 (from 78 fewer to 17 fewer)
Hospital adm	ission for l	neart failure	(total event	ts)							
5978 (7 RCTs)	not serious	not serious	not serious	not serious	none	⊕⊕⊕⊕ High	877/2912 (30.1%)	707/3066 (23.1%)	RR 0.80 (0.73 to 0.86)	301 per 1,000	60 fewer per 1,000 (from 81 fewer to 42 fewer)
CVD death an	d hospital	admission f	or heart fail	ure (numbo	er of events) ra	ter per 100 p	atient year				
2704 (3 RCTs)	not serious	not serious	not serious	not serious	none	⊕⊕⊕⊕ High	799/1273 (62.8%)	649/1431 (45.4%)	RR 0.79 (0.74 to 0.85)	628 per 1,000	132 fewer per 1,000 (from 163 fewer to 94 fewer)
Hospital adm	ission for l	neart failure	(number of	events) rat	ter per 100 pati	ient year					
2704 (3 RCTs)	not serious	not serious	not serious	not serious	none	⊕⊕⊕⊕ High	617/1273 (48.5%)	478/1431 (33.4%)	RR 0.76 (0.70 to 0.83)	485 per 1,000	116 fewer per 1,000 (from 145 fewer to 82 fewer)
6-min. walk d	listance at	follow up									
4820 (8 RCTs)	not serious	very seriousª	not serious	not serious	none	⊕⊕⊖⊖ Low	2341	2479		The mean 6-min. walk distance at follow up was 0	MD 23.56 higher (21.42 higher to 25.71 higher)
Change in 6-r	nin. walk d	listance fro	m baseline								
3865 (4 RCTs)	not serious	not serious	not serious	not serious	none	⊕⊕⊕⊕ High	1858	2007	-	The mean change in 6-min. walk distance from baseline was 0	MD 2.34 highe (0.69 higher to 4 higher)
Any adverse e	effect										
343 (2 RCTs)	not serious	not serious	not serious	very serious ^b	none	⊕⊕⊖⊖ Low	116/170 (68.2%)	124/173 (71.7%)	RR 1.06 (0.94 to 1.20)	682 per 1,000	41 more per 1,000 (from 41 fewer to 136 more)
Any seriious a	adverse ev	ent									
2748 (7 RCTs)	not serious	not serious	not serious	not serious	none	⊕⊕⊕⊕ High	771/1363 (56.6%)	707/1385 (51.0%)	RR 0.91 (0.85 to 0.97)	566 per 1,000	51 fewer per 1,000 (from 85 fewer to 17 fewer)
Any adverse e	event leadi	ng to withdr	awal								,
344 (2 RCTs)	not serious	not serious	not serious	very serious ^b	none	⊕⊕⊖⊖ Low	19/171 (11.1%)	14/173 (8.1%)	RR 0.74 (0.38 to 1.42)	111 per 1,000	29 fewer per 1,000 (from 69 fewer to 47 more)
Abnormal lab		• • •									
763 (2 RCTs)	not serious	not serious	not serious	very serious ^b	none	⊕⊕⊖⊖ Low	2/306 (0.7%)	1/457 (0.2%)	RR 0.50 (0.05 to 5.46)	7 per 1,000	3 fewer per 1,000 (from 6 fewer to 29 more)

CI: confidence interval; MD: mean difference; RR: risk ratio Explanations: a. I square test > 90% b. Low number of events < 300 events.

Primary Outcomes

Overall analysis

A. Cardiovascular mortality

There was an insignificant risk ratio between the IV iron group and control (RR = 0.90, 95% CI 0.80 to 1.01; p = 0.07, n = 7), with no heterogeneity ($l^2 = 0\%$, p = 0.84) (Figure 3a and Figure 4).

B. All-cause mortality

There was an insignificant risk ratio between the IV iron group and control (RR = 0.88, 95% CI 0.78 to 1.01; p = 0.06, n = 6), with no heterogeneity ($l^2 = 0\%$, p = 0.47) (Figure 3b and Figure 4).

C. Hospital admission for heart failure (first event) There was a significant risk ratio between the IV iron group and control (RR = 0.92, 95% CI 0.84 to 1.00; p = 0.04, n = 3), with moderate heterogeneity (I^2 = 44%, p = 0.12) (**Figure 3c and Figure 4**). Heterogeneity reduced when excluding Mentz et al., and results remained significant in favor of IV iron (RR = 0.85, 95% CI 0.77 to 0.95; p = 0.004), with moderate heterogeneity (I^2 = 29%, p = 0.23).

D. Hospital admission for heart failure (total event) IV iron group had lower hospital admissions than the control group (RR = 0.78, 95% CI 0.72 to 0.85; p < 0.00001, n = 2), with moderate heterogeneity ($I^2 = 55\%$, p = 0.03). Heterogeneity was reduced by excluding Ponikowiski et al., and the results remained significant in favor of the IV iron group (RR = 0.80, 95% CI 0.73 to 0.86; p < 0.0001), with moderate heterogeneity ($I^2 = 30\%$, p = 0.20) (Figure 3d and Figure 4).

E. Cardiovascular death and hospital admission for heart failure (number of events, rate per 100 patients in a year)

IV iron group was favored over the control group (RR = 0.81, 95% CI 0.76 to 0.87; p < 0.00001, n = 6), with high heterogeneity (I² = 63%, p = 0.04). Heterogeneity was reduced by excluding Mentz et al., and the results remained significant in favor of the IV iron group (RR = 0.79, 95% CI 0.74 to 0.85; p < 0.00001, n = 5), with no heterogeneity (I² = 0%, p = 0.58) (Figure 3e and Figure 4).

F. Hospital admission for heart failure (number of events, rate per 100 patients in a year)

IV iron group was favored over the control group (RR = 0.75, 95% CI 0.68 to 0.81; p < 0.00001, n = 5), with moderate heterogeneity (I^2 = 38%, p = 0.19). Heterogeneity was reduced by excluding Ponikowiski et al., and the results remained significant in favor of the IV iron group (RR = 0.76, 95% CI 0.70 to 0.83; p < 0.00001, n = 4), with no heterogeneity (I^2 = 0%, p = 0.46) (Figure 3f and Figure 4).

Subgroup analysis of main outcomes Subgroup analysis according to chronic or acute heart failure

In cardiovascular mortality, neither acute or chronic conditions showed significant differences with no heterogeneity observed (RR = 0.89, 95% CI 0.78 to 1.01; p = 0.06, n = 1), and (RR = 0.97, 95% CI 0.73 to 1.30; p = 0.85, n = 5), respectively (Figure S1).

In all-cause mortality, groups of chronic conditions hovered around significance, while overall results were insignificant (RR = 0.88, 95% CI 0.77 to 1.00; p = 0.05, n = 6), with no heterogeneity ($I^2 = 0\%$, p = 0.55) (**Figure S2**).

For hospital admission for heart failure (first event), the chronic heart failure group showed only significant preferences toward iron after removing HEART-FID due to heterogeneity (RR = 0.85, 95% CI 0.73 to 0.98; p = 0.03, n = 4), heterogeneity (I^2 = 56%, p = 0.1). (Figure S3).

In terms of total hospital admission for heart failure, in both acute and chronic conditions, iron was effective in reducing the total events (RR = 0.80, 95% CI 0.72 to 0.89; p < 0.0001, n = 5), heterogeneity (I^2 = 63%, p = 0.02), reduced by removing Ponikowski 2015 (I^2 = 32%, p = 0.21), and (RR = 0.73, 95% CI 0.64 to 0.83; p < 0.001), respectively (**Figure S4**).

Similar results were obtained for both drugs for CVD death and hospital admission for heart failure (number of events) rater per 100 patient-year [chronic heart failure (RR = 0.84, 95% CI 0.77 to 0.92; p < 0.0001, n = 3), heterogeneity (I^2 = 75%, p = 0.02), reduced by removing HEART-FID (I^2 = 0%, p = 0.44); acute heart failure (RR = 0.78, 95% CI 0.70 to 0.86; p < 0.0001, n = 1)], and hospital admission for heart failure (number of events)

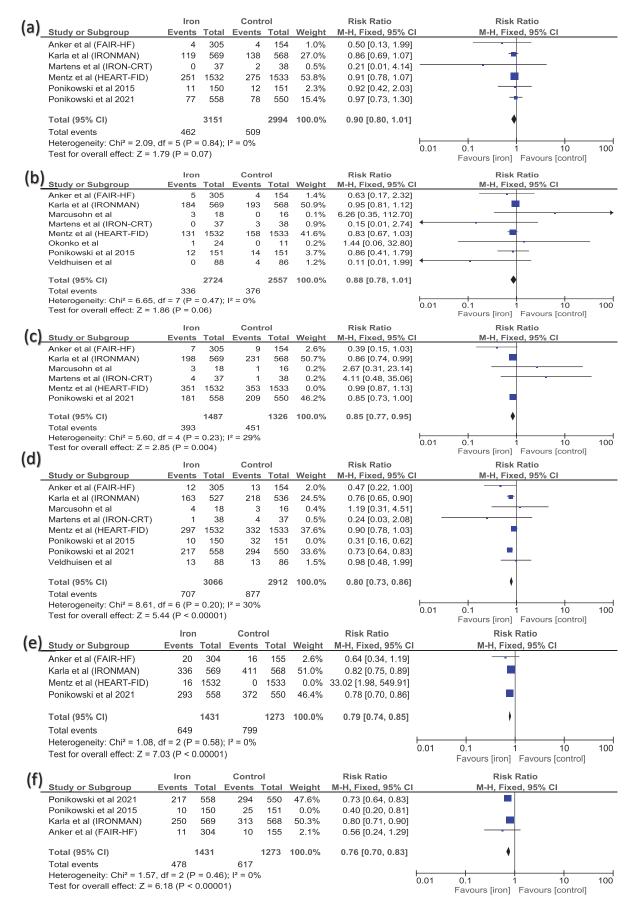


Figure 3. Forest plots examining the cardiovascular outcomes of intravenous iron infusion in patients with heart failure: (a) cardiovascular mortality; (b) all-cause mortality; (c) hospital admission for heart failure (first event); (d) hospital admission for heart failure (total event); (e) cardiovascular death and hospital admission for heart failure (number of events, rate per 100 patients in a year); (f) hospital admission for heart failure (number of events, rate per 100 patients in a year).

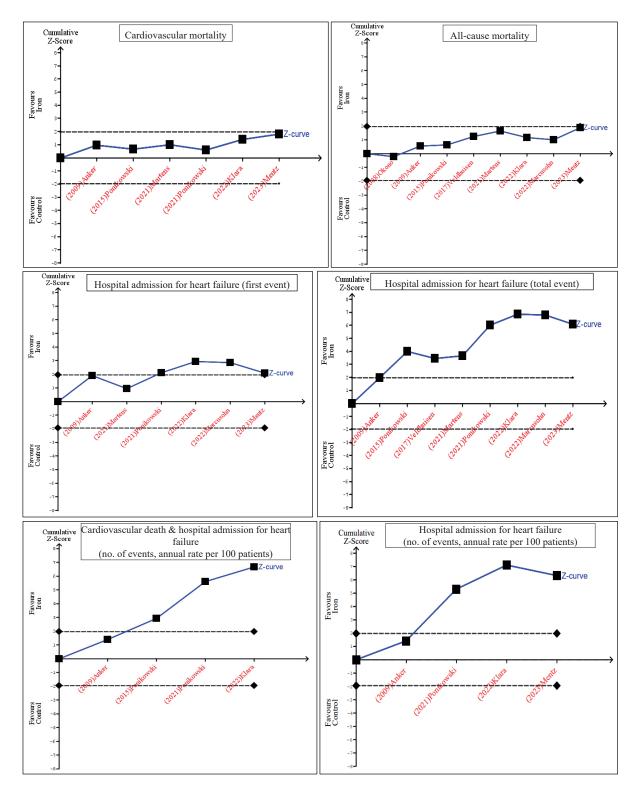


Figure 4. Sequential analysis for the main outcomes, cardiovascular mortality; all-cause mortality; hospital admission for heart failure (first event); hospital admission for heart failure (total event); cardiovascular death and hospital admission for heart failure (number of events, rate per 100 patients in a year); hospital admission for heart failure (number of events, rate per 100 patients in a year).

347

rater per 100 patient-year [chronic heart failure (RR = 0.76, 95% CI 0.68 to 0.86; p < 0.0001, n = 3), heterogeneity (I^2 = 54%, p = 0.22), reduced by removing Ponikowski 2015 (I^2 = 0%, p = 0.41); acute heart failure (RR = 0.73, 95% CI 0.64 to 0.83; p < 0.0001), n = 2] (Figure S5 and Figure S6).

Subgroup analysis according to the iron preparation

In cardiovascular mortality, neither Ferric carboxymaltose nor ferric derisomaltose showed significant preferences with no heterogeneity observed (RR = 0.92, 95% CI 0.80 to 1.05; p = 0.20, n = 5), and (RR = 0.86, 95% CI 0.69 to 1.07; p = 0.17, n = 1), respectively (**Figure S7**).

In all-cause mortality, despite overall results being insignificant, only the ferric carboxymaltose group significantly favored iron over the control (RR = 0.80, 95% CI 0.65 to 0.98; p = 0.03, n = 5), with no heterogeneity ($I^2 = 0\%$, p = 0.50). Ferric derisomaltose and sodium ferric gluconate complex results were insignificant (**Figure S8**).

For hospital admission for heart failure (first event), ferric carboxymaltose (only after removing HEART-FID due to heterogeneity) and ferric derisomaltose showed a significant reduction in hospital admissions (RR = 0.84, 95% CI 0.72 to 0.99; p = 0.03, n = 4), heterogeneity (I² = 56%, p = 0.1, and were not reduced after removing HEART-FID, neither influencing the results), and (RR = 0.86, 95% CI 0.74 to 0.99; p = 0.04, n = 3). respectively (Figure S9).

In terms of total hospital admission for heart failure, ferric carboxymaltose and ferric derisomaltose results were effective in reducing the total events (RR = 0.78, 95% CI 0.71 to 0.86; p < 0.001, n = 6), heterogeneity ($I^2 = 67\%$, p = 0.01), reduced by removing Ponikowski 2015 ($I^2 = 50\%$, p = 0.09), and (RR = 0.76, 95% CI 0.65 to 0.90; p = 0.001, n = 5), respectively (**Figure S10**).

Similar results were obtained for both drugs for CVD death and hospital admission for heart failure (number of events) rater per 100 patient-year [ferric carboxymaltose (RR = 0.81, 95% CI 0.73 to 0.89; p < 0.001, n = 3), heterogeneity ($I^2 = 75\%$, p = 0.02), reduced by removing HEART-FID ($I^2 = 0\%$, p = 0.54); ferric derisomaltose (RR = 0.82, 95% CI 0.75 to 0.89; p < 0.0001), n = 1], and hospital admission for heart failure (number of events) rater per 100 patient-year [ferric carboxymaltose (RR = 0.73, 95% CI 0.61 to 0.79; p < 0.0001), n = 3, heterogeneity (l^2 = 35%, p = 0.22), reduced by removing Ponikowski 2015 (l^2 = 0%, p = 0.54); ferric derisomaltose (RR = 0.80, 95% CI 0.71 to 0.90; p < 0.0001), n = 2] (Figure S11 and Figure S12).

Adverse effects Overall analysis

A. Cardiac disorder

IV iron group had fewer cardiac disorders than the control group (RR = 0.81, 95% CI 0.76 to 0.87; p < 0.00001, n = 7), with high heterogeneity ($I^2 = 66\%$, p = 0.01). Heterogeneity was reduced by excluding Anker et al., and the results remained significant in favor of the IV iron group (RR = 0.84, 95% CI 0.78 to 0.90; p < 0.00001, n = 6), with no heterogeneity ($I^2 = 0\%$, p = 0.65) (**Figure 5a**).

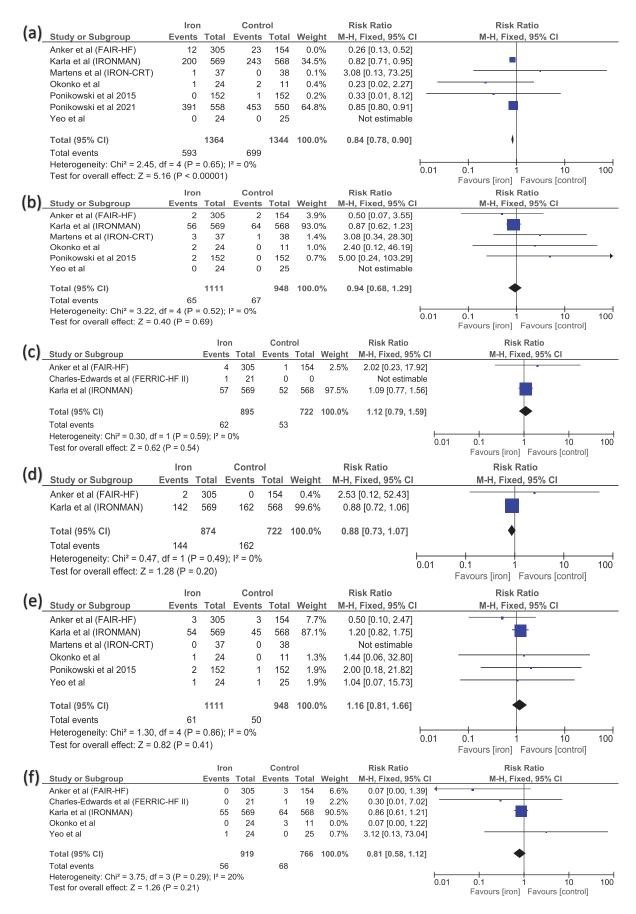
B. Gastrointestinal disorder

There were no significant results between the IV iron and control groups (RR = 0.94, 95% CI 0.68 to 1.29; p = 0.69, n = 6), with no high heterogeneity ($l^2 = 0\%$, p = 0.52) (Figure 5b).

C. Injection site condition

There were no significant results between the IV iron and control groups (RR = 1.12, 95% CI 0.79 to 1.59; p = 0.56, n = 3), with no high heterogeneity ($I^2 = 0\%$, p = 0.59) (**Figure 5c**).

D. Infection


There were no significant results between the IV iron and control groups (RR = 0.88, 95% CI 0.73 to 1.07; p = 0.20, n = 2), with no high heterogeneity ($I^2 = 0\%$, p = 0.49) (Figure 5d).

E. Nervous system, disorder

There were no significant results between the IV iron and control groups (RR = 1.16, 95% CI 0.81 to 1.66; p = 0.41, n = 6), with no high heterogeneity ($I^2 = 0\%$, p = 0.86) (**Figure 5e**).

F. Respiratory, thoracic, or mediastinal disorder

There were no significant results between the IV iron and control groups (RR = 0.76, 95% CI 0.55 to 1.05; p = 0.10, n = 5), with moderate heterogeneity ($l^2 = 40\%$, p = 0.15). Heterogeneity was reduced by excluding Okonko et al., and the results remained insignificant (RR = 0.81, 95% CI 0.58 to 1.12; p = 0.21, n = 4), with low heterogeneity ($l^2 = 20\%$, p = 0.29) (**Figure 5f**).

Figure 5. Forest plots examining the adverse effects of intravenous iron infusion in patients with heart failure: (a) cardiac disorder; (b) gastrointestinal disorder; (c) Injection site condition; (d) Infection; (e) nervous system disorder; (f) respiratory, thoracic, or mediational disorder.

G. Vascular disorder

There were no significant results between the IV iron and control groups (RR = 0.83, 95% CI 0.55 to 1.27; p = 0.40, n = 4), with no high heterogeneity ($I^2 = 0\%$, p = 0.86) (**Figure 6a**).

H. Any adverse effect

There were no significant results between the IV iron and control groups (RR = 1.09, 95% CI 0.96 to 1.24; p = 0.17, n = 3), with low heterogeneity ($l^2 = 25\%$, p = 0.26). Heterogeneity was reduced by excluding Martens et al. insignificant (RR = 1.06, 95% CI 0.94 to 1.20; p = 0.35, n = 2), with low heterogeneity ($l^2 = 0\%$, p = 0.38) (**Figure 6b**).

I. Any serious adverse event

There were no significant results between the IV iron and control groups (RR = 0.98, 95% CI 0.93 to 1.03; p = 0.37, n = 8), with moderate heterogeneity (I² = 54%, p = 0.06). Heterogeneity was reduced by excluding Mentz et al., and the results were altered in favor of IV iron group (RR = 0.91, 95% CI 0.85 to 0.97; p = 0.003, n = 7), with no heterogeneity (I² = 0%, p = 0.66) (Figure 6c).

J. Any adverse event leading to withdrawal

There were no significant results between the IV iron and control groups (RR = 0.74, 95% CI 0.38 to 1.42; p = 0.36, n = 2), and heterogeneity analysis was not applicable (**Figure 6d**).

K. Abnormal lab test, vital signs, or physical finding There were no significant results between the IV iron and control groups (RR = 0.50, 95% CI 0.05 to 5.46; p = 0.57, n = 2), and heterogeneity analysis was not applicable (Figure 6e).

Subgroup analysis for the adverse effects

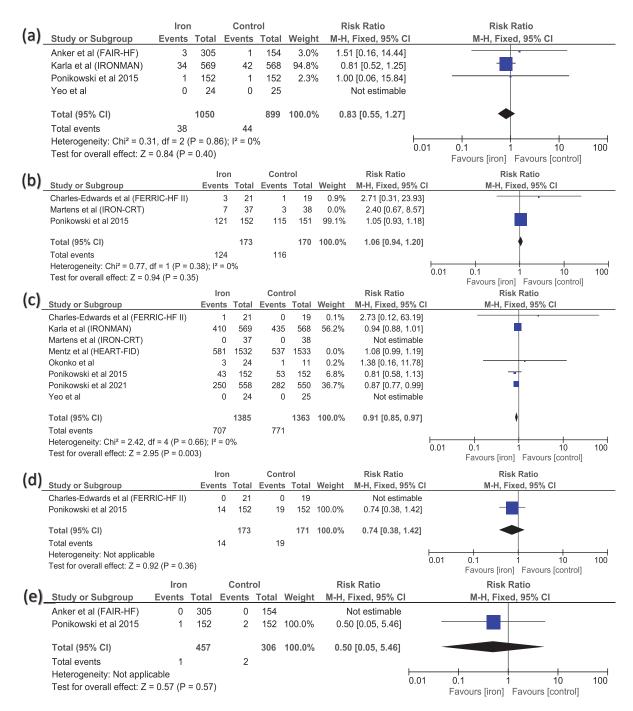
Subgroup analysis according to chronic or acute heart failure

Concerning the adverse events, iron reduced cardiac disorders in chronic and acute heart failure despite the lack of studies on the latter (**Figure S13**). Also, iron effectively reduced the serious adverse events in acute heart failure (RR = 0.87, 95% CI 0.77 to 0.99; p = 0.03, n = 6). In the case of chronic heart failure, the results became significant only after removing HEART-FID due to heterogeneity ($I^2 = 52\%$, p = 0.08) that had the highest number of events (RR = 0.93% CI 0.87 to 1.00; p = 0.04, n = 5) without heterogeneity ($l^2 = 0\%$, p = 0.72) (Figure S14).

Moreover, regarding respiratory, thoracic or mediastinum disorder, we observed a moderate heterogeneity in the chronic heart failure group ($l^2 = 50\%$, p = 0.11) which was resolved by removing the IRONMAN study and resulted in altering both the overall and chronic heart failure results (RR = 0.23, 95% CI 0.07 to 0.75; p = 0.01, n = 5), low heterogeneity ($l^2 = 32\%$, p = 0.27), and (RR = 0.10, 95% CI 0.02 to 0.54; p = 0.007, n = 4), without heterogeneity ($l^2 = 0\%$, p = 0.75). These results may highlight the importance of iron injections in reducing the serious adverse effects of chronic and acute cases and those related to respiratory, thoracic or mediastinum disorders in chronic cases (**Figure S15**).

No significant differences were observed in acute or chronic conditions in gastrointestinal, nervous system, or vascular disorders (**Figures S16, S17, S18**). It was not possible to subgroup these outcomes: injection site condition, infection, any adverse effect, any adverse event leading to withdrawal, abnormal lab tests, and vital signs or physical findings.

Subgroup analysis according to the iron preparation


Concerning the adverse events, both ferric carboxymaltose and ferric derisomaltose showed a beneficial effect in reducing the cardiac disorder (RR = 0.81, 95% CI 0.76 to 0.87; p < 0.0001, n = 4), and (RR = 0.82, 95% CI 0.71 to 0.95; p = 0.009, n = 1), respectively. Heterogeneity was resolved in the ferric carboxymaltose group by removing FAIR-HF without altering the results. Iron sucrose did not show any significance regarding cardiac disorders; however, it included only one study with an overall small sample size (**Figure S19**).

Moreover, in terms of the presence of any serious adverse effect, despite the insignificant results overall, that was altered when we removed HEART-FID, which resulted in making only ferric carboxymaltose (compared with derisomaltose, iron isomaltoside, and iron sucrose) ferric shows significant reduction (RR = 0.86, 95% CI 0.77 to 0.97; p = 0.01, n = 5) with no heterogeneity. Hence, overall results also became significant (RR = 0.91, 95% CI 0.85 to 0.97; p = 0.009, n = 8) (Figure S20).

All formulation results were comparable, and they did not significantly influence gastrointestinal disorder, injection site condition, infection, nervous system disorder, respiratory, thoracic or mediastinum disorder, vascular disorder, any adverse effect, any adverse event leading to withdrawal and abnormal lab test, vital sign or physical finding (Figures S20–S29).

Discussion

The current body of evidence shows that IV ferric carboxymaltose treatment reduces the risk of hospital admission for the first and total events of HF worsening. Moreover, it is associated with a lower risk of the combination of cardiovascular death and HF hospitalization (number of events,

Figure 6. Forest plots examining the adverse effects of intravenous iron infusion in patients with heart failure: (a) vascular disorder; (b) any adverse effect; (c) any serious adverse event; (d) any adverse event leading to withdrawal; (e) abnormal lab tests, vital signs, or physical finding.

351

rate per 100 patients in a year). However, ferric carboxymaltose does not affect all-cause mortality or cardiovascular mortality. Regarding safety, patients treated with iron therapy experienced fewer cardiac adverse effects than controls. At the same time, they displayed no additional risks of other adverse effects. Our findings confirmed what was previously shown by systematic reviews and meta-analyses, which reported the effectiveness of IV iron supplementation in reducing hospitalization and the combined endpoint of death and hospitalization for decompensated HF [30–32].

Events of acute decompensation are the primary cause of hospital admission for heart failure. According to its mechanism, HF decompensation represents the situation in which neurohormonal signaling, preload, afterload, and intrinsic inotropy are all out of balance, and compensated HF has reached this point [33]. Ventricular filling pressure elevation, venous and arterial congestion, vasoconstriction, and inotropy depression could result from this. Inotropy depression presents clinically as acute symptoms and congestion indicators that necessitate immediate, typically IV, therapy [33]. It has been demonstrated that iron deficiency, whether absolute or functional, can enhance the processes leading to decompensated heart failure by aggravating cardiac congestion, supporting unfavorable cardiac remodeling, and reducing myocardial inotropy. Thus, greater sensitivity to sympathetic stimulation has been observed in iron-deficient mice with cardiac hypertrophy [34]. This may favor peripheral vasoconstriction, a major element in the pathogenesis of HF decompensation by worsening central (i.e., cardiopulmonary) congestion [33].

Iron deficiency may weaken the heart's defenses against oxidative stress because iron is a co-factor for anti-oxidative enzymes. This phenomenon has been linked to the cardiac remodeling process during heart failure [35]. Cardiac remodeling is a deleterious process in HF that leads to cardiac dysfunction with subsequent symptoms of exacerbation [36]. In line with this, experimental evidence has shown that myocardial iron deficiency aggravates acute myocardial ischemia as well as post-ischemic remodeling, which worsens the clinical outcomes of myocardial infarction-associated HF [37]. Moreover, iron deficiency impairs the contractility and relaxation of human cardiomyocytes by downregulating RyR2 channels and sup-

pressing SERCA pump activity [38, 39]. This would then change the inotropy, which would aggravate systolic dysfunction and increase the risk of heart failure decompensation. Conversely, rodents supplemented with IV ferric carboxymaltose had normal Ca2+ signaling again [38]. Therefore, we can assume that iron replacement therapy can reverse the harmful effects of systemic iron deficiency and myocardial iron deficiency on cardiac function in the context of HF, inducing disease control and lesser susceptibility to acute symptomatic events that require hospitalization.

Notably, the latest months have seen progress in research on the impact of IV supplementation in heart failure, which warrants discussion. Further analysis of data from the IRONMAN trial [28] suggested that patients with anemia or with low transferrin saturation (even with adequate ferritin) benefit the most from intravenous iron supplementation [40]. Improved response in patients with low transferrin saturation was also highlighted in a recent meta-analysis by Martens et al. [41]. Furthermore, IRONMAN investigators showed data that indicate a general increase in resilience due to iron supplementation, with effect seen in hospitalizations for both cardiac and non-cardiovascular indications [42]. It is also noteworthy that further evidence for the beneficial influence of intravenous iron in patients with heart failure and preserved ejection fraction emerged from the FAIR-HFpEF trial, which demonstrated a benefit in 6-minute walking test distance [43]. The interplay between ejection fraction and the capacity to utilize and store iron appears as an interesting research topic.

Notably, the combined outcome of cardiovascular mortality and hospitalizations was decreased in the IV iron group, likely due to the reduced odds of HF hospitalization. Nevertheless, iron therapy had no effects on cardiovascular or all-cause mortality. Notably, both AFFIRM-AHF and HEART FID trials showed that supplementation with IV iron does not impact the risk of cardiovascular death. The positive effects of iron therapy in reducing mortality were noted in the IRONMAN study. All of these three studies were conducted during the COVID-19 pandemic, which could have a major influence on the effect of treatment, as the authors disclosed it. Especially in the context of COVID-19, HF population has witnessed a substantial reduction in hospitalizations and an increase in in-hospital mortality [44]. Moreover, in the HEART FID trial, iron supplementation did not benefit in reducing cardiovascular hospitalizations. Here too, the authors reported possible interference of the COVID-19 pandemic with the treatment outcomes. Further studies outside of COVID-19 are needed to confirm the previous findings [45, 46].

Ferric carboxymaltose demonstrated good tolerability in clinical trials involving patients with iron deficiency. Most adverse events associated with its use were mild to moderate in severity. Commonly reported side effects included headache, dizziness, nausea, abdominal pain, constipation, diarrhea, rash, and injection-site reactions [47]. According to our analysis, we affirm that FC has a good safety profile in HF patients who are iron deficient as it did not increase the risk for any particular side effects relatively. It reduces the risk for cardiovascular side effects. Moreover, we observed that iron injections may reduce any adverse severe event for acute and chronic conditions, and respiratory, thoracic, or mediastinal disorders for chronic conditions mainly. This encourages further investigation of IV ferric carboxymaltose in large-scale studies.

Our study aligens with the newly published meta-analyses, Mhanna et al. conducted a systematic review and meta-analysis analyzing data from 14 RCTs involving 6,614 patients. The study demonstrated that IV iron therapy significantly improved quality of life and the 6-minute walk test compared to standard care, although it did not significantly affect left ventricular ejection fraction. [48] Awad et al. data from 18 RCTs found significant improvements in guality of life, as indicated by Kansas City Cardiomyopathy Questionnaire (KCCQ) scores, and enhanced clinical outcomes, including increased serum ferritin and hemoglobin levels. While all-cause hospitalizations and heart failure-related deaths showed no significant difference, IV iron therapy reduced hospitalizations due to heart failure. [49] Sephien et al. found that IV iron therapy was associated with a significant improvement in quality of life and a notable reduction in first heart failure hospitalizations. However, there was no significant change in all-cause mortality [50].

Implications for future research and clinical practice

The transition from inpatient to outpatient care is a vulnerable period for HF patients, particularly the elderly and those with comorbidities [51]. Additionally, HF hospitalization is associated with an elevated risk of mortality [52]. From an economic standpoint, HF hospitalizations are considered costly, with mean HF-specific inpatient costs in the USA ranging from \$10,737 to \$17,830 per hospitalization [53].

While recent HF treatments have demonstrated mortality reduction benefits, their impact on hospitalization rates remains neutral [51]. Preventing iron deficiency through iron supplementation can mitigate the risk of HF-related hospitalizations. Notably, IV iron therapy is safe and effective for HF patients, irrespective of anemia. This is because iron deficiency in HF patients can be functional, selectively affecting the myocardium—a condition known as myocardial iron deficiency, which is challenging to diagnose. Consequently, even patients with normal iron levels may benefit from iron therapy.

Therefore, it may become an integral part of routine treatment strategies aimed at preventing decompensation events. However, the promising benefits of IV iron supplementation in patients with HF must be carefully weighed against the potential safety concerns associated with iron overload [54]. IV iron administration introduces substantial amounts of non-transferrin-bound iron, bypassing hepatic regulatory mechanisms, which can lead to iron overload. Most published studies have utilized IV iron sucrose (with a maximum dose of 200 mg per session) or ferric carboxymaltose (with a maximum dose of 1000 mg per week) [55]. Due to gut wall edema, oral iron preparations, typically containing Fe², have been associated with poor absorption, a high incidence of side effects (affecting up to 40% of patients), and the necessity for up to six months of intake to restore iron stores [55].

On the other hand, unlike the IV form, oral iron absorption is tightly regulated by the effects of hepcidin; thereby, it can rarely lead to iron excess [54]. Oral iron can improve cardiac function, as measured by changes in left ventricular ejection fraction, among HF patients with iron deficiency, according to a recent meta-analysis of four RCTs (n = 582 patients); exercise capacity did not significantly increase [56]. Oral iron supplementation is more practical than IV ferric carboxymaltose due to higher availability and cheaper costs, making the former option worthy of greater investigation [24]. This points to the need for further research comparing the effects of IV and oral iron on HF-related outcomes.

Notably, the European Cardiology Society heart failure guidelines (2023 update; Recommendation Table 5) indicate that IV should be used to reduce the risk of hospitalization and increase quality of life in patients with iron deficiency and symptomatic heart failure with at least mild reduction of ejection fraction [57]. It is supposed that further extension of this recommendation might follow to include patients with preserved ejection fraction or additional comments on symptoms or the optimal way of diagnosing iron deficiency.

Strengths and limitations

This systematic review and meta-analysis represent the most updated study assessing the safety and efficacy profile of IV ferric carboxymaltose among heart failure patients. Similar work was previously conducted by Zhou et al. in 2019 [32] and Osman et al. in 2021 [31]. However, significant studies have been published since then, such as IRONMAN, HEART-FID, and AFFIRM-AHF, phase 3 RCTs. More recently, Reinhold et al. in 2023 [30], explored the effects of IV iron replacement therapy on cardiovascular outcomes in HF patients. Notably, their focus was solely on efficacy outcomes, lacking examination of safety-related outcomes, which are highly interesting. Our study incorporated updated data from 14 RCTs, involving 6,626 patients, some of which were large-scale, multicenter, double-blind studies.

Concerning the limitations, firstly, not all included studies maintained optimal methodological quality, with some being open-label or single-blind and/or having few participants. Secondly, due to incomplete information, we did not assess the impact of iron supplementation on cardiac function-related outcomes such as left ventricular ejection fraction, HF symptoms (e.g., dyspnea), quality of life, and cardiorespiratory performance. Thirdly, the included studies did not achieve the long-term follow-up needed to identify IV iron-based therapy's benefits fully. Fourthly, comparing the effects of different iron-based treatments (e.g., infused doses and used molecules) was impossible. Regarding iron preparation, most of the included studies covered only ferric carboxymaltose and ferric derisomaltose, both showing good efficacy and a comparable safety profile. However, there is a need for additional studies exploring the outcomes of other iron-based supplementations, including iron isomaltoside, iron sucrose, and sodium ferric gluconate complex, as the number of patients who received these treatments in the included studies was very small, hence insufficient to indicate any differences.

Conclusions

IV iron infusion is an effective option to reduce hospitalization episodes and cardiovascular mortality among HF patients. Additionally, it is a safe and well-tolerable treatment that can be given to this group of patients as an adjuvant therapy to traditional medications. Nevertheless, further studies are still required to confirm the clinical advantages of iron-based supplementations in the context of HF.

Acknowledgements

Mohamed Abouzid is a participant of STER Internationalisation of Doctoral Schools Programme from NAWA Polish National Agency for Academic Exchange No. PPI/STE/2020/1/00014/DEC/02. The abstract of this study was presented and published in the European Society of Cardiology Congress, London, UK [58].

List of Abbreviations: heart failure (HF), intravenous (IV), randomized controlled trial (RCT), mean difference (MD), confidence interval (CI), risk ratio (RR).

Ethics approval and consent to participate: this article does not contain any studies with human or animal subjects performed by any of the authors.

Consent for publication: not applicable.

Availability of data and material: all data generated or analysed during this study are included in this published article.

Authors' contributions. MAazm: conceptualization and methodology. AR, OA, AA, IU, MAazm and BA: investigation and data curation. MAzid: formal analysis. YK and MAzid: Writing – Original Draft. BA: Supervision. MT: Project administration. MAazm, MAzid, MT and BA: Writing – Review & Editing. All authors read and approved the final content.

Conflict of interest statement

The authors declare no conflict of interest.

Funding sources

There are no sources of funding to declare.

References

- Bozkurt B, Coats AJS, Tsutsui H, et al (2021) Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail 23:352–380. doi: 10.1002/ejhf.2115.
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1789–1858. doi: 10.1016/S0140-6736(18)32279-7.
- Savarese G, Becher PM, Lund LH, et al (2023) Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res 118:3272– 3287. doi: 10.1093/cvr/cvac013.
- Alnuwaysir RIS, Hoes MF, van Veldhuisen DJ, et al (2021) Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J Clin Med 11:125. doi: 10.3390/jcm11010125.
- Anand IS, Gupta P (2018) Anemia and Iron Deficiency in Heart Failure. Circulation 138:80–98. doi: 10.1161/ CIRCULATIONAHA.118.030099.
- Maeder MT, Khammy O, dos Remedios C, Kaye DM (2011) Myocardial and systemic iron depletion in heart failure implications for anemia accompanying heart failure. J Am Coll Cardiol 58:474–480. doi: 10.1016/j.jacc.2011.01.059.
- Zhang H, Jamieson KL, Grenier J, et al (2022) Myocardial Iron Deficiency and Mitochondrial Dysfunction in Advanced Heart Failure in Humans. J Am Heart Assoc 11:e022853. doi: 10.1161/JAHA.121.022853.
- Klip IT, Comin-Colet J, Voors AA, et al (2013) Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J 165:575-582.e3. doi: 10.1016/j.ahj.2013.01.017.
- Ponikowski P, van Veldhuisen DJ, Comin-Colet J, et al (2015) Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiencyt. Eur Heart J 36:657–668. doi: 10.1093/eurheartj/ ehu385.
- Ponikowski P, Kirwan B-A, Anker SD, et al (2020) Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet 396:1895–1904. doi: 10.1016/S0140-6736(20)32339-4.
- 11. Mentz RJ, Garg J, Rockhold FW, et al (2023) Ferric Carboxymaltose in Heart Failure with Iron Deficiency. New England Journal of Medicine 389:975–986. doi: 10.1056/NEJMoa2304968.
- 12. Page MJ, McKenzie JE, Bossuyt PM, et al (2021) The PRISMA 2020 statement: an updated guideline

for reporting systematic reviews. BMJ 372:n71. doi: 10.1136/bmj.n71.

- 13. Higgins JP, Thomas J, Chandler J, et al (2019) Cochrane handbook of systematic reviews of interventions. John Wiley & Sons, Ltd, Chichester (UK).
- Sterne JAC, Savović J, Page MJ, et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:I4898. doi: 10.1136/bmj.I4898.
- Schünemann HJ, Oxman AD, Brozek J, et al (2008) Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 336:1106–1110. doi: 10.1136/bmj.39500.677199.AE.
- Guyatt G, Oxman AD, Akl EA, et al (2011) GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. Journal of Clinical Epidemiology 64:383–394. doi: 10.1016/j. jclinepi.2010.04.026.
- 17. Joanne E McKenzie, Sue E Brennan, Rebecca E Ryan, et al (2023) Chapter 9: Summarizing study characteristics and preparing for synthesis. In: Cochrane Handbook for Systematic Reviews of Interventions. Cochrane.
- 10.4.3.1 Recommendations on testing for funnel plot asymmetry. https://handbook-5-1.cochrane.org/ chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asymmetry.htm. Accessed 20 Feb 2024.
- Marcusohn E, Borreda I, Hellman Y, et al (2022) IV Sodium Ferric Gluconate Complex in Patients With Iron Deficiency Hospitalized due to Acute Heart Failure-Investigator Initiated, Randomized Controlled Trial. J Cardiovasc Pharmacol 80:194–196. doi: 10.1097/FJC.000000000001287.
- Núñez J, Miñana G, Cardells I, et al (2020) Noninvasive Imaging Estimation of Myocardial Iron Repletion Following Administration of Intravenous Iron: The Myocardial-IRON Trial. J Am Heart Assoc 9:e014254. doi: 10.1161/JAHA.119.014254.
- Okonko DO, Grzeslo A, Witkowski T, et al (2008) Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FER-RIC-HF: a randomized, controlled, observer-blinded trial. J Am Coll Cardiol 51:103–112. doi: 10.1016/j. jacc.2007.09.036.
- 22. Toblli JE, Lombraña A, Duarte P, Di Gennaro F (2007) Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J Am Coll Cardiol 50:1657– 1665. doi: 10.1016/j.jacc.2007.07.029.
- 23. van Veldhuisen DJ, Ponikowski P, van der Meer P, et al (2017) Effect of Ferric Carboxymaltose on Exercise Capacity in Patients With Chronic Heart Failure and Iron Deficiency. Circulation 136:1374–1383. doi: 10.1161/CIRCULATIONAHA.117.027497.
- 24. Yeo TJ, Yeo PSD, Hadi FA, et al (2018) Single-dose intravenous iron in Southeast Asian heart failure patients: A pilot randomized placebo-controlled study (PRACTICE-ASIA-HF). ESC Heart Fail 5:344– 353. doi: 10.1002/ehf2.12250.
- 25. Anker SD, Comin Colet J, Filippatos G, et al (2009) Ferric carboxymaltose in patients with heart failure

355

and iron deficiency. N Engl J Med 361:2436-2448. doi: 10.1056/NEJMoa0908355.

- 26. Caravita S, Faini A, Vignati C, et al (2022) Intravenous iron therapy improves the hypercapnic ventilatory response and sleep disordered breathing in chronic heart failure. Eur J Heart Fail 24:1940–1949. doi: 10.1002/ejhf.2628.
- Charles-Edwards G, Amaral N, Sleigh A, et al (2019) Effect of Iron Isomaltoside on Skeletal Muscle Energetics in Patients With Chronic Heart Failure and Iron Deficiency. Circulation 139:2386–2398. doi: 10.1161/ CIRCULATIONAHA.118.038516.
- Kalra PR, Cleland JGF, Petrie MC, et al (2022) Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN): an investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial. Lancet 400:2199–2209. doi: 10.1016/S0140-6736(22)02083-9.
- Martens P, Dupont M, Dauw J, et al (2021) The effect of intravenous ferric carboxymaltose on cardiac reverse remodelling following cardiac resynchronization therapy-the IRON-CRT trial. Eur Heart J 42:4905–4914. doi: 10.1093/eurheartj/ehab411.
- Reinhold J, Burra V, Corballis N, et al (2023) Effects of Intravenous Iron Replacement Therapy on Cardiovascular Outcomes in Patients with Heart Failure: A Systematic Review and Meta-Analysis. J Cardiovasc Dev Dis 10:116. doi: 10.3390/jcdd10030116.
- Osman M, Syed M, Balla S, et al (2021) A Meta-analysis of Intravenous Iron Therapy for Patients With Iron Deficiency and Heart Failure. Am J Cardiol 141:152– 153. doi: 10.1016/j.amjcard.2020.11.025.
- Zhou X, Xu W, Xu Y, Qian Z (2019) Iron Supplementation Improves Cardiovascular Outcomes in Patients with Heart Failure. Am J Med 132:955–963. doi: 10.1016/j.amjmed.2019.02.018.
- Njoroge JN, Teerlink JR (2021) Pathophysiology and Therapeutic Approaches to Acute Decompensated Heart Failure. Circulation Research 128:1468–1486. doi: 10.1161/CIRCRESAHA.121.318186.
- 34. Turner LR, Premo DA, Gibbs BJ, et al (2002) Adaptations to iron deficiency: cardiac functional responsiveness to norepinephrine, arterial remodeling, and the effect of beta-blockade on cardiac hypertrophy. BMC Physiol 2:1. doi: 10.1186/1472-6793-2-1.
- Martens P (2022) The Effect of Iron Deficiency on Cardiac Function and Structure in Heart Failure with Reduced Ejection Fraction. Card Fail Rev 8:e06. doi: 10.15420/cfr.2021.26.
- Azevedo PS, Polegato BF, Minicucci MF, et al (2016) Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq Bras Cardiol 106:62–69. doi: 10.5935/ abc.20160005.
- Corradi F, Masini G, Bucciarelli T, De Caterina R (2023) Iron deficiency in myocardial ischaemia: molecular mechanisms and therapeutic perspectives. Cardiovasc Res 119:2405–2420. doi: 10.1093/cvr/cvad146.
- Chung YJ, Luo A, Park KC, et al (2019) Iron-deficiency anemia reduces cardiac contraction by downregulating RyR2 channels and suppressing SERCA pump

activity. JCI Insight 4:e125618, 125618. doi: 10.1172/jci.insight.125618.

- Hoes MF, Grote Beverborg N, Kijlstra JD, et al (2018) Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. European Journal of Heart Failure 20:910–919. doi: 10.1002/ejhf.1154.
- 40. Cleland JGF, Kalra PA, Pellicori P, et al (2024) Intravenous iron for heart failure, iron deficiency definitions, and clinical response: the IRONMAN trial. European Heart Journal 45:1410–1426. doi: 10.1093/eurheartj/ ehae086.
- Martens P, Augusto SN, Mullens W, Tang WHW (2024) Meta-Analysis and Metaregression of the Treatment Effect of Intravenous Iron in Iron-Deficient Heart Failure. JACC: Heart Failure 12:525–536. doi: 10.1016/j. jchf.2023.11.006.
- Cleland JGF, Pellicori P, Graham FJ, et al (2024) Adjudication of Hospitalizations and Deaths in the IRON-MAN Trial of Intravenous Iron for Heart Failure. Journal of the American College of Cardiology 84:1704– 1717. doi: 10.1016/j.jacc.2024.08.052.
- 43. Von Haehling S, Doehner W, Evertz R, et al (2024) Ferric carboxymaltose and exercise capacity in heart failure with preserved ejection fraction and iron deficiency: the FAIR-HFpEF trial. European Heart Journal 45:3789–3800. doi: 10.1093/eurheartj/ehae479.
- 44. Shoaib A, Van Spall HGC, Wu J, et al (2021) Substantial decline in hospital admissions for heart failure accompanied by increased community mortality during COVID-19 pandemic. Eur Heart J Qual Care Clin Outcomes 7:378–387. doi: 10.1093/ehjqcco/ qcab040.
- 45. Bhatt AS, Moscone A, McElrath EE, et al (2020) Fewer Hospitalizations for Acute Cardiovascular Conditions During the COVID-19 Pandemic. J Am Coll Cardiol 76:280–288. doi: 10.1016/j.jacc.2020.05.038.
- 46. Hernández-Vásquez A, Visconti-Lopez FJ, Alburqueque-Cruz R, Rojas-Roque C (2023) Hospitalizations and mortality of patients with heart failure in the COVID-19 era in Peru. Journal of Taibah University Medical Sciences 18:186–189. doi: 10.1016/j. jtumed.2022.07.009.
- 47. Lyseng-Williamson KA, Keating GM (2009) Ferric carboxymaltose: a review of its use in iron-deficiency anaemia. Drugs 69:739–756. doi: 10.2165/00003495-200969060-00007.
- 48. Mhanna M, Sauer MC, Al-Abdouh A, et al (2024) Intravenous iron therapy for patients with iron deficiency and heart failure: a systematic review and metaanalysis of randomized controlled trials. Baylor University Medical Center Proceedings 37:466–476. doi: 10.1080/08998280.2024.2326387.
- 49. Awad AK, Abdelgalil MS, Gonnah AR, et al (2024) Intravenous iron for acute and chronic heart failure with reduced ejection fraction (HFrEF) patients with iron deficiency: An updated systematic review and meta-analysis. Clinical Medicine 24:100211. doi: 10.1016/j.clinme.2024.100211.
- 50. Sephien A, Dayto DC, Reljic T, et al (2024) Efficacy of Intravenous Iron in Patients with Heart Failure with Reduced Ejection Fraction and Iron Defi-

ciency: A Systematic Review and Meta-Analysis of Randomized Control Trials. Am J Cardiovasc Drugs 24:285-302. doi: 10.1007/s40256-024-00635-7.

- 51. Mesquita ET, Jorge AJL, Rabelo LM, Jr CVS (2017) Understanding Hospitalization in Patients with Heart Failure. Int J Cardiovasc Sci 30:81-90.
- 52. Blumer V, Mentz RJ, Sun J-L, et al (2021) Prognostic Role of Prior Heart Failure Hospitalization Among Patients Hospitalized for Worsening Chronic Heart Failure. Circulation: Heart Failure 14:e007871. doi: 10.1161/CIRCHEARTFAILURE.120.007871.
- 53. Osenenko KM, Kuti E, Deighton AM, et al (2022) Burden of hospitalization for heart failure in the United States: a systematic literature review. J Manag Care Spec Pharm 28:157-167. doi: 10.18553/ jmcp.2022.28.2.157.
- 54. Sawicki KT, Ardehali H (2021) Intravenous Iron Therapy in Heart Failure With Reduced Ejection Fraction: Tackling the Deficiency. Circulation 144:253-255. doi: 10.1161/CIRCULATIONAHA.121.054271.

failure':ti,ab,kw OR hfref:ti,ab,kw OR hf:ti,ab,kw OR hfpef:ti,ab,kw

- 55. von Haehling S, Ebner N, Evertz R, et al (2019) Iron Deficiency in Heart Failure: An Overview. JACC: Heart Failure 7:36-46. doi: 10.1016/j.jchf.2018.07.015.
- 56. Tan N, Cai Y, Liu J, et al (2022) Effects and Safety of Oral Iron for Heart Failure with Iron Deficiency: A Systematic Review and Meta-Analysis with Trial Sequential Analysis. Cardiovascular Therapeutics 2022:e6442122. doi: 10.1155/2022/6442122.
- 57. McDonagh TA, Metra M, Adamo M, et al (2023) 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal 44:3627-3639. doi: 10.1093/eurheartj/ehad195.
- 58. Abouzid M, Tanashat M, Khlidj Y, et al (2024) Efficacy and safety of intravenous iron therapy in heart failure patients with iron deficiency: a systematic review and meta-analysis of randomized controlled trials. European Heart Journal 45:ehae666.3278. doi: 10.1093/ eurhearti/ehae666.3278.

Database	Search terms	5		Search field	Search results
Pubmed	("Heart failure" OR "Cardiac Failure" OR " Heart Deco OR "HFrEF" OR "HF" OR "HFpEF") AND ("intravenous "iron derisomaltose" OR "iron supplementation" OR " "iron isomaltoside" OR "ferric gluconate")	iron" OR "fe	erric carboxymaltose" OR	All Field	598
Cochrane	("Heart failure" OR "Cardiac Failure" OR " Heart Deco OR "HFrEF" OR "HF" OR "HFpEF") AND ("intravenous "iron derisomaltose" OR "iron supplementation" OR " "iron isomaltoside" OR "ferric gluconate")	iron" OR "fe	rric carboxymaltose" OR	Title, Abstract, Keywords	245
WOS	("Heart failure" OR "Cardiac Failure" OR " Heart Deco OR "HFrEF" OR "HF" OR "HFpEF") AND ("intravenous "iron derisomaltose" OR "iron supplementation" OR " "iron isomaltoside" OR "ferric gluconate")	iron" OR "fe	rric carboxymaltose" OR	Abstract	417
SCOPUS	("Heart failure" OR "Cardiac Failure" OR "Heart Deco OR "HFrEF" OR "HF" OR "HFpEF") AND ("intravenous "iron derisomaltose" OR "iron supplementation" OR " "iron isomaltoside" OR "ferric gluconate")	iron" OR "fe	rric carboxymaltose" OR	Abstract	500
EMBASE	Session Results			All Field	985
	 No. Query Results #3. #1 AND #2 #2. 'intravenous iron':ti,ab,kw OR 'ferric carboxymaltose':ti,ab,kw OR 'iron derisomaltose':ti,ab,kw OR 'iron supplementation':ti,ab,kw OR 'iron therapy':ti,ab,kw OR 'iron sucrose':ti,ab,kw OR 'iron isomaltoside':ti,ab,kw OR 'ferric gluconate':ti,ab,kw 	Results 985 14,830	Date 31 Aug 2023 31 Aug 2023		
	#1. 'cardiac failure':ti,ab,kw OR 'heart failure':ti,ab,kw OR 'myocardial	431,302	31 Aug 2023		

Supplementary data

Pub

WOS

Table S1. Search strategy. ("Heart failure" OR "Cardiac Failure" OR " Heart Decompensation" OR "Myocardial Failure" OR "HFrEF" OR "HF" OR "HFpEF") AND ("intravenous iron" OR "ferric carboxymaltose" OR "iron derisomaltose" OR "iron supplementation" OR "iron therapy" OR "iron sucrose" OR "iron isomaltoside" OR "ferric gluconate"). Date/ 31/08/2023

Figure S1. Subgroup ana	vsis according to	o chronic or acute heart	failure for c	ardiovascular mortality.

	Iron	1	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
3.1.1 Chronic heart failure							
Anker et al (FAIR-HF)	4	305	4	154	1.0%	0.50 [0.13, 1.99]	
Karla et al (IRONMAN)	119	569	138	568	27.0%	0.86 [0.69, 1.07]	-
Martens et al (IRON-CRT)	0	37	2	38	0.5%	0.21 [0.01, 4.14]	
Mentz et al (HEART-FID)	251	1532	275	1533	53.8%	0.91 [0.78, 1.07]	•
Ponikowski et al 2015	11	150	12	151	2.3%	0.92 [0.42, 2.03]	
Subtotal (95% CI)		2593		2444	84.6%	0.89 [0.78, 1.01]	•
Total events	385		431				
3.1.2 Acute heart failure Ponikowski et al 2021 Subtotal (95% CI)	77	558 558	78	550 550	15.4% 15.4%	0.97 [0.73, 1.30] 0.97 [0.73, 1.30]	+
Total events Heterogeneity: Not applicab Test for overall effect: Z = 0.			78	550	13.4 /	0.97 [0.73, 1.30]	Ť
Total (95% CI)		3151		2994	100.0%	0.90 [0.80, 1.01]	•
Total events	462		509				
Heterogeneity: Chi ² = 2.09, o	df = 5 (P =	0.84);	l² = 0%				0.01 0.1 1 10 10
Test for overall effect: Z = 1.	79 (P = 0.	07)					0.01 0.1 1 10 10 Favours [iron] Favours [control]
Test for subgroup difference	-	-					

Figure S2. Subgroup analysis according to chronic or acute heart failure for all-cause mortality.

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
3.2.1 Chronic heart failure							
Anker et al (FAIR-HF)	5	305	4	154	1.4%	0.63 [0.17, 2.32]	
Karla et al (IRONMAN)	184	569	193	568	50.9%	0.95 [0.81, 1.12]	
Martens et al (IRON-CRT)	0	37	3	38	0.9%	0.15 [0.01, 2.74]	←
Mentz et al (HEART-FID)	131	1532	158	1533	41.6%	0.83 [0.67, 1.03]	=
Okonko et al	1	24	0	11	0.2%	1.44 [0.06, 32.80]	
Ponikowski et al 2015	12	151	14	151	3.7%	0.86 [0.41, 1.79]	
Veldhuisen et al	0	88	4	86	1.2%	0.11 [0.01, 1.99]	←
Subtotal (95% CI)		2706		2541	99.9%	0.88 [0.77, 1.00]	•
Total events	333		376				
Heterogeneity: Chi ² = 4.95, d	lf = 6 (P =	0.55);	l² = 0%				
Test for overall effect: Z = 1.9	99 (P = 0.	05)					
3.2.2 Acute heart failure							
Marcusohn et al	3	18	0	16	0.1%	6.26 [0.35, 112.70]	
Subtotal (95% CI)		18		16	0.1%	6.26 [0.35, 112.70]	
Total events	3		0				
Heterogeneity: Not applicable	е						
Test for overall effect: Z = 1.2	24 (P = 0.)	21)					
Total (95% CI)		2724		2557	100.0%	0.88 [0.78, 1.01]	◆
Total events	336		376				
Heterogeneity: Chi ² = 6.65, d	lf = 7 (P =	0.47);	l ² = 0%				
							0.01 0.1 1 10 100
Test for overall effect: Z = 1.8	50(F - 0.9)	00)					Favours [iron] Favours [control]

Figure S3. Subgroup a	analvsis according to	chronic or acute heart failure for Hospital admission	for heart failure (first event).

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI
3.3.1 Chronic heart failure							
Anker et al (FAIR-HF)	7	305	9	154	2.6%	0.39 [0.15, 1.03]	
Karla et al (IRONMAN)	198	569	231	568	50.7%	0.86 [0.74, 0.99]	
Martens et al (IRON-CRT)	4	37	1	38	0.2%	4.11 [0.48, 35.06]	
Mentz et al (HEART-FID) Subtotal (95% CI)	351	1532 911	353	1533 760	0.0% 53.6%	0.99 [0.87, 1.13] 0.85 [0.73, 0.98]	•
Total events	209		241				
Heterogeneity: Chi ² = 4.52, c	lf = 2 (P =	0.10);	l² = 56%				
Test for overall effect: Z = 2.2	22 (P = 0.	03)					
3.3.2 Acute heart failure							
Marcusohn et al	3	18	1	16	0.2%	2.67 [0.31, 23.14]	
Ponikowski et al 2021 Subtotal (95% CI)	181	558 576	209	550 566	46.2% 46.4%	0.85 [0.73, 1.00] 0.86 [0.74, 1.01]	•
Total events	184		210				
Heterogeneity: Chi² = 1.06, c	f = 1 (P =	0.30);	l² = 6%				
Test for overall effect: Z = 1.8	31 (P = 0.0	07)					
Total (95% CI)		1487		1326	100.0%	0.85 [0.77, 0.95]	•
Total events	393		451				
Heterogeneity: Chi ² = 5.60, d	f = 4 (P =	0.23);	l² = 29%				
Test for overall effect: $Z = 2.8$	35 (P = 0.0	004)					0.01 0.1 1 10 100 Favours [iron] Favours [control]
Test for subgroup differences	s: Chi ² = 0	.03. df	= 1 (P = 0	0.86), l ^a	² = 0%		

Figure S4. Subgroup analysis according to chronic or acute heart failure for Hospital admission for heart failure (total event).

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% CI
3.4.1 Chronic heart failure							
Anker et al (FAIR-HF)	12	305	13	154	2.0%	0.47 [0.22, 1.00]	
Karla et al (IRONMAN)	163	527	218	536	24.5%	0.76 [0.65, 0.90]	+
Martens et al (IRON-CRT)	1	38	4	37	0.5%	0.24 [0.03, 2.08]	
Mentz et al (HEART-FID)	297	1532	332	1533	37.6%	0.90 [0.78, 1.03]	-
Ponikowski et al 2015	10	150	32	151	0.0%	0.31 [0.16, 0.62]	
Veldhuisen et al	13	88	13	86	1.5%	0.98 [0.48, 1.99]	
Subtotal (95% CI)		2490		2346	66.1%	0.83 [0.75, 0.92]	♦
Total events	486		580				
Heterogeneity: Chi ² = 5.90, o	df = 4 (P =	0.21);	l² = 32%				
Test for overall effect: Z = 3.	51 (P = 0.	0004)					
3.4.2 Acute heart failure							
Marcusohn et al	4						
	4	18	3	16	0.4%	1.19 [0.31, 4.51]	
Ponikowski et al 2021	4 217	18 558	3 294	16 550	0.4% 33.6%	1.19 [0.31, 4.51] 0.73 [0.64, 0.83]	
							•
Ponikowski et al 2021 Subtotal (95% CI) Total events		558		550	33.6%	0.73 [0.64, 0.83]	•
Subtotal (95% CI)	217 221	558 576	294 297	550	33.6%	0.73 [0.64, 0.83]	•
Subtotal (95% CI) Total events Heterogeneity: Chi² = 0.51, c	217 221 df = 1 (P =	558 576 0.48);	294 297 1² = 0%	550	33.6%	0.73 [0.64, 0.83]	•
Subtotal (95% Cl) Total events	217 221 df = 1 (P =	558 576 0.48);	294 297 1² = 0%	550 566	33.6%	0.73 [0.64, 0.83]	•
Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.51, o Test for overall effect: Z = 4.	217 221 df = 1 (P =	558 576 0.48); 00001)	294 297 1² = 0%	550 566	33.6% 33.9%	0.73 [0.64, 0.83] 0.73 [0.64, 0.83]	•
Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.51, o Test for overall effect: Z = 4. Total (95% CI)	217 221 df = 1 (P = 72 (P < 0. 707	558 576 0.48); 00001) 3066	294 297 1 ² = 0% 877	550 566	33.6% 33.9%	0.73 [0.64, 0.83] 0.73 [0.64, 0.83]	
Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.51, o Test for overall effect: Z = 4. Total (95% CI) Total events	217 221 df = 1 (P = 72 (P < 0. 707 df = 6 (P =	558 576 0.48); 00001) 3066 0.20);	294 297 $4^{2} = 0\%$ 877 $4^{2} = 30\%$	550 566	33.6% 33.9%	0.73 [0.64, 0.83] 0.73 [0.64, 0.83]	0.01 0.1 1 10 11 Favours [iron] Favours [control]

359

Figure S5. Subgroup analysis according to chronic or acute heart failure for cardiovascular death and hospital admission for heart failure (number of events) rater per 100 patient-year.

	Iron		Contr	lo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
3.5.1 Chronic heart failure							
Anker et al (FAIR-HF)	20	304	16	155	2.6%	0.64 [0.34, 1.19]	
Karla et al (IRONMAN)	336	569	411	568	51.0%	0.82 [0.75, 0.89]	
Mentz et al (HEART-FID) Subtotal (95% CI)	16	1532 873	0	1533 723	0.0% 53.6%	33.02 [1.98, 549.91] 0.81 [0.74, 0.88]	•
Total events	356		427				
Heterogeneity: $Chi^2 = 0.61$, Test for overall effect: Z = 4	•	<i>,</i> .					
3.5.2 Acute heart failure							
Ponikowski et al 2021 Subtotal (95% CI)	293	558 558	372	550 550	46.4% 46.4%	0.78 [0.70, 0.86] 0.78 [0.70, 0.86]	
Total events Heterogeneity: Not applicab Test for overall effect: Z = 5.		00001)	372				
Total (95% CI)		1431		1273	100.0%	0.79 [0.74, 0.85]	•
Total events	649		799			- / -	
Heterogeneity: Chi ² = 1.08,	df = 2 (P =	0.58);	l² = 0%				
Test for overall effect: $Z = 7$.							0.01 0.1 1 10 100
Test for subaroup difference	•	,		0.56).	l² = 0%		Favours [iron] Favours [control]

Figure S6. Subgroup analysis according to chronic or acute heart failure for hospital admission for heart failure (number of events) rater per 100 patient-year.

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% CI
3.6.1 Chronic heart faile	ıre						
Anker et al (FAIR-HF)	11	304	10	155	2.1%	0.56 [0.24, 1.29]	
Karla et al (IRONMAN)	250	569	313	568	50.3%	0.80 [0.71, 0.90]	
Ponikowski et al 2015 Subtotal (95% CI)	10	150 873	25	151 723	0.0% 52.4%	0.40 [0.20, 0.81] 0.79 [0.70, 0.89]	•
Total events	261	0.0	323		02.170		Ť
Heterogeneity: Chi ² = 0.6 Test for overall effect: Z =				0			
3.6.2 Acute heart failure)						
Ponikowski et al 2021 Subtotal (95% CI)	217	558 558	294	550 550	47.6% 47.6%	0.73 [0.64, 0.83] 0.73 [0.64, 0.83]	•
Total events	217		294				
Heterogeneity: Not applie Test for overall effect: Z =		0.000	01)				
Total (95% Cl)		1431		1273	100.0%	0.76 [0.70, 0.83]	•
Total events Heterogeneity: Chi ² = 1.5 Test for overall effect: Z = Test for subgroup differe	= 6.18 (P <	0.000	01)		s), I² = 0%		0.01 0.1 1 10 100 Favours [iron] Favours [control]

	Figure S7. Subgrou	p analysis accordin	a to the iron preparation	on for cardiovascular mortality.
--	--------------------	---------------------	---------------------------	----------------------------------

	Iron	1	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	CI M-H, Fixed, 95% CI
2.1.1 Ferric carboxymalto	se						
Anker et al (FAIR-HF)	4	305	4	154	1.0%	0.50 [0.13, 1.99]	
Martens et al (IRON-CRT)	0	37	2	38	0.5%	0.21 [0.01, 4.14]	
Mentz et al (HEART-FID)	251	1532	275	1533	53.8%	0.91 [0.78, 1.07]	I 📫
Ponikowski et al 2015	11	150	12	151	2.3%	0.92 [0.42, 2.03]	
Ponikowski et al 2021	77	558	78	550	15.4%	0.97 [0.73, 1.30]	1 +
Subtotal (95% CI)		2582		2426	73.0%	0.92 [0.80, 1.05]	●
Total events	343		371				
2.1.2 Ferric derisomaltose		500	100	500	07.00/	0.00.00.00.00.0071	
Karla et al (IRONMAN) Subtotal (95% CI)	119	569 569	138	568 568	27.0% 27.0%	0.86 [0.69, 1.07] 0.86 [0.69, 1.07]	
Total events	119		138				
Heterogeneity: Not applicab	le						
Test for overall effect: Z = 1	.36 (P = 0.	17)					
Total (95% CI)		3151		2994	100.0%	0.90 [0.80, 1.01]	↓
Total events	462		509				
Heterogeneity: Chi ² = 2.09,	df = 5 (P =	0.84);	l² = 0%				0.01 0.1 1 10
Test for overall effect: $Z = 1$.79 (P = 0.	07)					Favours [iron] Favours [control]

Figure S8. Subgroup analysis according to the iron preparation for all cause mortality.

		5		• •			,
	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% CI
2.1.1 Ferric carboxymaltose	e						
Anker et al (FAIR-HF)	4	305	4	154	1.0%	0.50 [0.13, 1.99]	
Martens et al (IRON-CRT)	0	37	2	38	0.5%	0.21 [0.01, 4.14]	
Mentz et al (HEART-FID)	251	1532	275	1533	53.8%	0.91 [0.78, 1.07]	•
Ponikowski et al 2015	11	150	12	151	2.3%	0.92 [0.42, 2.03]	
Ponikowski et al 2021 Subtotal (95% CI)	77	558 2582	78	550 2426	15.4% 73.0%	0.97 [0.73, 1.30] 0.92 [0.80, 1.05]	
Total events	343		371				
Test for overall effect: Z = 1.2 2.1.2 Ferric derisomaltose Karla et al (IRONMAN) Subtotal (95% CI)	119	569 569	138	568 568	27.0% 27.0%	0.86 [0.69, 1.07] 0.86 [0.69, 1.07]	
Total events Heterogeneity: Not applicable Test for overall effect: Z = 1.3			138	500	27.070	0.00 [0.03, 1.07]	•
Total (95% CI)		3151		2994	100.0%	0.90 [0.80, 1.01]	•
Total events Heterogeneity: Chi² = 2.09, d	462 f = 5 (P =	0.84).	509 I² = 0%				

361

Figure S9. Subgroup analysis accordin	g to the iron preparation fo	or hospital admission for	heart failure (first event).

	Iron		Cont	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% CI
2.3.2 Ferric carboxymaltos	е						
Anker et al (FAIR-HF)	7	305	9	154	2.6%	0.39 [0.15, 1.03]	
Martens et al (IRON-CRT)	4	37	1	38	0.2%	4.11 [0.48, 35.06]	
Mentz et al (HEART-FID)	351	1532	353	1533	0.0%	0.99 [0.87, 1.13]	
Ponikowski et al 2021	181	558	209	550	46.2%	0.85 [0.73, 1.00]	
Subtotal (95% CI)		900		742	49.0%	0.84 [0.72, 0.99]	◆
Total events	192		219				
Heterogeneity: Chi ² = 4.51, d	f = 2 (P =	0.10);	l² = 56%				
Test for overall effect: Z = 2.7	12 (P = 0.	03)					
2.3.3 Ferric derisomaltose							
Karla et al (IRONMAN)	198	569	231	568	50.7%	0.86 [0.74, 0.99]	
Subtotal (95% CI)		569		568	50.7%	0.86 [0.74, 0.99]	•
Total events	198		231				
Heterogeneity: Not applicable	Э						
Test for overall effect: Z = 2.0	04 (P = 0.	04)					
2.3.4 Sodium ferric glucona	ate comp	lex					
Marcusohn et al	3	18	1	16	0.2%	2.67 [0.31, 23.14]	
Subtotal (95% CI)		18		16	0.2%	2.67 [0.31, 23.14]	
Total events	3		1				
Heterogeneity: Not applicable	Э						
Test for overall effect: Z = 0.8	39 (P = 0.	37)					
Total (95% CI)		1487		1326	100.0%	0.85 [0.77, 0.95]	•
Total events	393		451				
Heterogeneity: Chi ² = 5.60, d		0.23):					
Test for overall effect: $Z = 2.8$							0.01 0.1 1 10 1
Test for subgroup differences			= 2 (P =	0.58).	² = 0%		Favours [iron] Favours [control]

Figure S10. Subgroup analysis according to the iron preparation for hospital admission for heart failure (total event).

	-	-				-	
	Iron		Cont	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI
2.4.2 Ferric carboxymaltose	e						
Anker et al (FAIR-HF)	12	305	13	154	2.0%	0.47 [0.22, 1.00]	
Martens et al (IRON-CRT)	1	38	4	37	0.5%	0.24 [0.03, 2.08]	
Mentz et al (HEART-FID)	297	1532	332	1533	37.6%	0.90 [0.78, 1.03]	=
Ponikowski et al 2015	10	150	32	151	0.0%	0.31 [0.16, 0.62]	
Ponikowski et al 2021	217	558	294	550	33.6%	0.73 [0.64, 0.83]	=
Veldhuisen et al	13	88	13	86	1.5%	0.98 [0.48, 1.99]	
Subtotal (95% CI)		2521		2360	75.1%	0.81 [0.73, 0.89]	•
Total events	540		656				
Heterogeneity: Chi ² = 8.04, d	f = 4 (P =	0.09);	l² = 50%				
Test for overall effect: Z = 4.4	4 (P < 0.	00001)					
2.4.3 Ferric derisomaltose							
Karla et al (IRONMAN)	163	527	218	536	24.5%	0.76 [0.65, 0.90]	
Subtotal (95% CI)		527		536	24.5%	0.76 [0.65, 0.90]	•
Total events	163		218				
Heterogeneity: Not applicable							
Test for overall effect: Z = 3.2	28 (P = 0.	001)					
2.4.6 Sodium ferric glucona	ite comp	lex					
Marcusohn et al	4	18	3	16	0.4%	1.19 [0.31, 4.51]	
Subtotal (95% CI)		18		16	0.4%	1.19 [0.31, 4.51]	
Total events	4		3				
Heterogeneity: Not applicable	9						
Test for overall effect: Z = 0.2	25 (P = 0.	80)					
	`	,					
Total (95% CI)		3066		2912	100.0%	0.80 [0.73, 0.86]	♦
Total events	707		877				
Heterogeneity: Chi² = 8.61, d	f = 6 (P =	0.20);	l² = 30%				0.01 0.1 1 10 1
Test for overall effect: Z = 5.4	4 (P < 0.	00001)					Favours [iron] Favours [control]
Test for subgroup differences	: Chi ² = 0).72. df	= 2 (P =	0.70), I	² = 0%		

Figure S11. Subgroup analysis according to the iron preparation for cardiovascular death and hospital admission for heart failure (number of events) rater per 100 patient year.

	Iron		Conti	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
2.5.1 Ferric carboxymaltos	se						
Anker et al (FAIR-HF)	20	304	16	155	2.6%	0.64 [0.34, 1.19]	
Mentz et al (HEART-FID)	16	1532	0	1533	0.0%	33.02 [1.98, 549.91]	
Ponikowski et al 2021 Subtotal (95% CI)	293	558 862	372	550 705	46.4% 49.0%	0.78 [0.70, 0.86] 0.77 [0.70, 0.85]	•
Total events	313		388				
Heterogeneity: Chi ² = 0.38,	df = 1 (P	= 0.54)	; I² = 0%				
Test for overall effect: Z = 5	.26 (P < 0	.00001)				
2.5.2 Ferric derisomaltose							
Karla et al (IRONMAN) Subtotal (95% CI)	336	569 569	411	568 568	51.0% 51.0%	0.82 [0.75, 0.89] 0.82 [0.75, 0.89]	•
Total events	336		411				,
Heterogeneity: Not applicab	le						
Test for overall effect: Z = 4		.00001)				
Total (95% CI)		1431		1273	100.0%	0.79 [0.74, 0.85]	•
Total events	649		799				
Heterogeneity: Chi ² = 1.08,	df = 2 (P =	= 0.58);	: l ² = 0%				
Test for overall effect: Z = 7	.03 (P < 0	.00001)				0.01 0.1 1 10 100
Test for subgroup difference			,	0.37),	l² = 0%		Favours [iron] Favours [control]

Figure S12. Subgroup analysis according to the iron preparation for hospital admission for heart failure (number of events) rater per 100 patient year.

	Iron		Contr			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
2.6.1 Ferric carboxyma	ltose						
Anker et al (FAIR-HF)	11	304	10	155	2.1%	0.56 [0.24, 1.29]	
Ponikowski et al 2015	10	150	25	151	0.0%	0.40 [0.20, 0.81]	
Ponikowski et al 2021	217	558	294	550	47.6%	0.73 [0.64, 0.83]	
Subtotal (95% CI)		862		705	49.7%	0.72 [0.63, 0.82]	♦
Total events	228		304				
Heterogeneity: Chi ² = 0.3	37, df = 1 (P = 0.5	4); l² = 0%	6			
Test for overall effect: Z	= 4.98 (P <	< 0.000	01)				
2.6.2 Ferric derisomalto	ose						
Karla et al (IRONMAN)	250	569	313	568	50.3%	0.80 [0.71, 0.90]	
Subtotal (95% CI)		569		568	50.3%	0.80 [0.71, 0.90]	♦
Total events	250		313				
Heterogeneity: Not applie	cable						
Test for overall effect: Z	= 3.74 (P =	= 0.0002	2)				
Total (95% CI)		1431		1273	100.0%	0.76 [0.70, 0.83]	•
Total events	478		617				
Heterogeneity: Chi ² = 1.5	57, df = 2 (P = 0.4	6); I² = 0%	, 0			0.01 0.1 1 10 10
Test for overall effect: Z	= 6.18 (P <	< 0.000	01)				Favours [iron] Favours [control]
Test for subgroup differe	nces: Chi ²	= 1.29,	df = 1 (P	= 0.26	i), l ² = 22.3	3%	

Figure S13. Subgroup analysis according to chronic or acute heart failure for cardiac

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
3.7.1 Chronic heart failure							
Anker et al (FAIR-HF)	12	305	23	154	0.0%	0.26 [0.13, 0.52]	
Karla et al (IRONMAN)	200	569	243	568	34.5%	0.82 [0.71, 0.95]	=
Martens et al (IRON-CRT)	1	37	0	38	0.1%	3.08 [0.13, 73.25]	
Okonko et al	1	24	2	11	0.4%	0.23 [0.02, 2.27]	· · · · · · · · · · · · · · · · · · ·
Ponikowski et al 2015	0	152	1	152	0.2%	0.33 [0.01, 8.12]	
Subtotal (95% CI)		782		769	35.2%	0.82 [0.71, 0.94]	◆
Total events	202		246				
Heterogeneity: Chi² = 2.16, d	lf = 3 (P =	0.54);	l² = 0%				
Test for overall effect: Z = 2.7	72 (P = 0.	007)					
3.7.2 Acute heart failure							
Ponikowski et al 2021	391	558	453	550	64.8%	0.85 [0.80, 0.91]	•
Yeo et al	0	24	0	25		Not estimable	
Subtotal (95% CI)		582		575	64.8%	0.85 [0.80, 0.91]	•
Total events	391		453				
Heterogeneity: Not applicable	е						
Test for overall effect: Z = 4.7	76 (P < 0.	00001)					
Total (95% CI)		1364		1344	100.0%	0.84 [0.78, 0.90]	•
Total events	593		699				
Heterogeneity: Chi ² = 2.45, d	lf = 4 (P =	0.65);	l² = 0%				
Test for overall effect: $Z = 5$.	16 (P < 0.	00001)					0.01 0.1 1 10 100
Test for subgroup differences				0.62). I	² = 0%		Favours [iron] Favours [control]

Figure S14. Subgroup analysis according to chronic or acute heart failure for any serious adverse event.

5 5 1 5	5					,		
	Iron		Contr	ol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	1	M-H, Fixed, 95% CI
3.15.1 Chronic heart failure								
Charles-Edwards et al (FERRIC-HF II)	1	21	0	19	0.1%	2.73 [0.12, 63.19]		
Karla et al (IRONMAN)	410	569	435	568	56.2%	0.94 [0.88, 1.01]		
Martens et al (IRON-CRT)	0	37	0	38		Not estimable		
Mentz et al (HEART-FID)	581	1532	537	1533	0.0%	1.08 [0.99, 1.19]		
Okonko et al	3	24	1	11	0.2%	1.38 [0.16, 11.78]		
Ponikowski et al 2015 Subtotal (95% CI)	43	152 803	53	152 788	6.8% 63.3%	0.81 [0.58, 1.13] 0.93 [0.87, 1.00]		
Total events	457		489					
Test for overall effect: Z = 2.02 (P = 0.04) 3.15.2 Acute heart failure								
Ponikowski et al 2021	250	558	282	550	36.7%	0.87 [0.77, 0.99]		-
Yeo et al Subtotal (95% CI)	0	24 582	0	25 575	36.7%	Not estimable 0.87 [0.77, 0.99]		•
Total events Heterogeneity: Not applicable Test for overall effect: Z = 2.15 (P = 0.03)	250		282					
Total (95% CI)		1385		1363	100.0%	0.91 [0.85, 0.97]		•
Total events	707		771					
Heterogeneity: $Chi^2 = 2.42$, $df = 4$ (P = 0.6 Test for overall effect: Z = 2.95 (P = 0.003 Test for subgroup differences: $Chi^2 = 0.74$							0.01	0.1 1 10 Favours [iron] Favours [control]

Figure S15. Subgroup analysis according to chronic or acute heart failure for respiratory, thoracic, or mediastinum disorder.

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	CI M-H, Fixed, 95% CI
3.12.1 Chronic heart failure							
Anker et al (FAIR-HF)	0	305	3	154	40.6%	0.07 [0.00, 1.39]	
Charles-Edwards et al (FERRIC-HF II)	0	21	1	19	13.7%	0.30 [0.01, 7.02]	
Karla et al (IRONMAN)	55	569	64	568	0.0%	0.86 [0.61, 1.21]	
Okonko et al Subtotal (95% CI)	0	24 350	3	11 184	41.4% 95.7%	0.07 [0.00, 1.22] 0.10 [0.02, 0.54]	
Total events	0		7				
Heterogeneity: $Chi^2 = 0.58$, df = 2 (P = 0.7 Test for overall effect: Z = 2.69 (P = 0.007		70					
3.12.2 Acute heart failure							
Yeo et al Subtotal (95% CI)	1	24 24	0	25 25	4.3% 4.3%	3.12 [0.13, 73.04] 3.12 [0.13, 73.04]	
Total events	1		0				
Heterogeneity: Not applicable							
Test for overall effect: $Z = 0.71 (P = 0.48)$							
Total (95% CI)		374		209	100.0%	0.23 [0.07, 0.75]	
Total events	1		7				
Heterogeneity: Chi ² = 3.92, df = 3 (P = 0.2	7); l ² = 2	3%					
Test for overall effect: Z = 2.45 (P = 0.01)							0.01 0.1 1 10 100 Favours [iron] Favours [control]
Test for subgroup differences: Chi ² = 3.51.	, df = 1 (F	P = 0.06	6), I² = 71	.5%			

Figure S16. Subgroup analysis according to chronic or acute heart failure for gastrointestinal tract disorder.

	Iron	1	Contr	ol		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I	M-H, Fixed, 95% Cl	
3.8.1 Chronic heart failure									
Anker et al (FAIR-HF)	2	305	2	154	3.9%	0.50 [0.07, 3.55]			
Karla et al (IRONMAN)	56	569	64	568	93.0%	0.87 [0.62, 1.23]			
Martens et al (IRON-CRT)	3	37	1	38	1.4%	3.08 [0.34, 28.30]			
Okonko et al	2	24	0	11	1.0%	2.40 [0.12, 46.19]			
Ponikowski et al 2015 Subtotal (95% CI)	2	152 1087	0	152 923	0.7% 100.0%	5.00 [0.24, 103.29] 0.94 [0.68, 1.29]		•	→
Total events	65		67						
Test for overall effect: Z = 0. 3.8.2 Acute heart failure Yeo et al	0 (1 - 0.	24	0	25		Not estimable			
Subtotal (95% CI)	0	24	0	25		Not estimable			
Total events Heterogeneity: Not applicabl Test for overall effect: Not ap			0						
Total (95% CI)		1111		948	100.0%	0.94 [0.68, 1.29]		•	
Total events Heterogeneity: Chi ² = 3.22, c Test for overall effect: Z = 0. Test for subgroup difference:	40 (P = 0.	69)	67 I² = 0%			-	⊢ 0.01	0.1 1 10 Favours [iron] Favours [control]	100

Figure S17. Subgroup	analysis accord	lina to chronic a	or acute heart failure	for nerves system disorder.

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI
3.11.1 Chronic heart failure	•						
Anker et al (FAIR-HF)	3	305	3	154	7.7%	0.50 [0.10, 2.47]	
Karla et al (IRONMAN)	54	569	45	568	87.1%	1.20 [0.82, 1.75]	-
Martens et al (IRON-CRT)	0	37	0	38		Not estimable	
Okonko et al	1	24	0	11	1.3%	1.44 [0.06, 32.80]	
Ponikowski et al 2015 Subtotal (95% CI)	2	152 1087	1	152 923	1.9% 98.1%	2.00 [0.18, 21.82] 1.16 [0.81, 1.66]	
Total events	60	1007	49	925	50.176	1.10 [0.01, 1.00]	T
3.11.2 Acute heart failure							
Yeo et al	1	24	1	25	1.9%	1.04 [0.07, 15.73]	
Subtotal (95% CI)		24		25	1.9%	1.04 [0.07, 15.73]	
Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.0		98)	1				
Total (95% CI)		1111		948	100.0%	1.16 [0.81, 1.66]	•
Total events	61		50			- / -	Ť
Heterogeneity: Chi ² = 1.30, d	f = 4 (P =	0.86);	$ ^2 = 0\%$				
Test for overall effect: Z = 0.8		· · ·					0.01 0.1 1 10 10
Test for subgroup differences		'	= 1 (P =	0.94). I	² = 0%		Favours [iron] Favours [control]

Figure S18. Subgroup analysis according to chronic or acute heart failure for vascular disorder.

	Iron		Contr			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
3.13.1 Chronic heart failu	re						
Anker et al (FAIR-HF)	3	305	1	154	3.0%	1.51 [0.16, 14.44]	·
Karla et al (IRONMAN)	34	569	42	568	94.8%	0.81 [0.52, 1.25]	
Ponikowski et al 2015	1	152	1	152	2.3%	1.00 [0.06, 15.84]	
Subtotal (95% CI)		1026		874	100.0%	0.83 [0.55, 1.27]	•
Total events	38		44				
Heterogeneity: Chi ² = 0.31,	df = 2 (P = 0.8	6); l² = 0%	6			
Test for overall effect: Z = 0).84 (P =	= 0.40)					
3.13.2 Acute heart failure							
Yeo et al	0	24	0	25		Not estimable	
Subtotal (95% CI)		24		25		Not estimable	
Total events	0		0				
Heterogeneity: Not applicat	ble						
Test for overall effect: Not a	applicab	le					
Total (95% CI)		1050		899	100.0%	0.83 [0.55, 1.27]	•
Total events	38		44				
Heterogeneity: Chi ² = 0.31,	df = 2 (P = 0.8	6); I² = 0%	6		H	
Test for overall effect: Z = 0).84 (P =	= 0.40)	-			(0.01 0.1 1 10 10 Favours [iron] Favours [control]
Test for subgroup difference	es: Not a	applica	ble				

Figure S19. Subgroup analysis according to the iron preparation for cardiac disorder

	Iron		Conti	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI
2.7.1 Ferric carboxymaltos	e						
Anker et al (FAIR-HF)	12	305	23	154	0.0%	0.26 [0.13, 0.52]	
Martens et al (IRON-CRT)	1	37	0	38	0.1%	3.08 [0.13, 73.25]	
Ponikowski et al 2015	0	152	1	152	0.2%	0.33 [0.01, 8.12]	
Ponikowski et al 2021	391	558	453	550	64.8%	0.85 [0.80, 0.91]	
Yeo et al	0	24	0	25		Not estimable	
Subtotal (95% CI)		771		765	65.1%	0.85 [0.80, 0.91]	•
Total events	392		454				
Heterogeneity: Chi ² = 0.96, o	df = 2 (P =	0.62);	l² = 0%				
Test for overall effect: Z = 4.	71 (P < 0.	00001)					
2.7.2 Ferric derisomaltose							
Karla et al (IRONMAN)	200	569	243	568	34.5%	0.82 [0.71, 0.95]	
Subtotal (95% CI)		569		568	34.5%	0.82 [0.71, 0.95]	▼
Total events	200		243				
Heterogeneity: Not applicabl							
Test for overall effect: $Z = 2$.	63 (P = 0.	009)					
2.7.3 Iron sucrose							
Okonko et al	1	24	2	11	0.4%	0.23 [0.02, 2.27]	
Subtotal (95% CI)		24		11	0.4%	0.23 [0.02, 2.27]	
Total events	1		2				
Heterogeneity: Not applicabl	le						
Test for overall effect: Z = 1.	26 (P = 0.	21)					
Total (95% CI)		1364		1344	100.0%	0.84 [0.78, 0.90]	•
Total events	593		699				
Heterogeneity: Chi ² = 2.45, d	df = 4 (P =	0.65);	l² = 0%				
Test for overall effect: Z = 5.	•	· · ·					0.01 0.1 1 10 10
Test for subaroup difference			= 2 (P =	0.49), I	² = 0%		Favours [iron] Favours [control]

Figure S20. Subgroup analysis according to the iron preparation for any serious adverse effect.

Study or Subgroup 2.15.1 Ferric carboxymaltose Martens et al (IRON-CRT)	0 581		Contr Events		Weight	Risk Ratio M-H, Fixed, 95% Cl	Risk Ratio M-H, Fixed, 95% Cl
2.15.1 Ferric carboxymaltose	0 581		Events	Total	Weight	M-H, Fixed, 95% Cl	M-H. Fixed, 95% CI
	581	37					
Martens et al (IRON-CRT)	581	37					
			0	38		Not estimable	
Mentz et al (HEART-FID)		1532	537	1533	0.0%	1.08 [0.99, 1.19]	
Ponikowski et al 2015	43	152	53	152	6.8%	0.81 [0.58, 1.13]	
Ponikowski et al 2021	250	558	282	550	36.7%	0.87 [0.77, 0.99]	-
Yeo et al	0	24	0	25		Not estimable	
Subtotal (95% CI)		771		765	43.5%	0.86 [0.77, 0.97]	•
Total events	293		335				
Heterogeneity: $Chi^2 = 0.17$, df = 1 (P = 0		%					
Test for overall effect: $Z = 2.47$ (P = 0.01)						
2.15.2 Ferric derisomaltose							
Karla et al (IRONMAN)	410	569	435	568	56.2%	0.94 [0.88, 1.01]	
Subtotal (95% CI)		569		568	56.2%	0.94 [0.88, 1.01]	•
Total events	410		435				
Heterogeneity: Not applicable							
Test for overall effect: Z = 1.75 (P = 0.08	5)						
2.15.3 Iron isomaltoside							
Charles-Edwards et al (FERRIC-HF II)	1	21	0	19	0.1%	2.73 [0.12, 63.19]	
Subtotal (95% CI)		21		19	0.1%	2.73 [0.12, 63.19]	
Total events	1		0				
Heterogeneity: Not applicable							
Test for overall effect: Z = 0.63 (P = 0.53	5)						
2.15.4 Iron sucrose							
Okonko et al	3	24	1	11	0.2%	1.38 [0.16, 11.78]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)		24		11	0.2%	1.38 [0.16, 11.78]	
Total events	3		1				
Heterogeneity: Not applicable							
Test for overall effect: Z = 0.29 (P = 0.77)						
Total (95% CI)		1385		1363	100.0%	0.91 [0.85, 0.97]	•
Total events	707		771				
Heterogeneity: $Chi^2 = 2.42$, df = 4 (P = 0	.66); I ² = 0	%					
Test for overall effect: Z = 2.95 (P = 0.00							0.01 0.1 1 10 ·
Test for subgroup differences: Chi ² = 2.1	,	P = 0.5	5), I ² = 0%	6			Favours [iron] Favours [control]

367

Figure S21. Subgroup analysis according to the iron preparation for any gastrointestinal tract disorder.

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
2.8.1 Ferric carboxymaltose	е						
Anker et al (FAIR-HF)	2	305	2	154	3.9%	0.50 [0.07, 3.55]	
Martens et al (IRON-CRT)	3	37	1	38	1.4%	3.08 [0.34, 28.30]	
Ponikowski et al 2015	2	152	0	152	0.7%	5.00 [0.24, 103.29]	
Yeo et al	0	24	0	25		Not estimable	
Subtotal (95% CI)		518		369	6.0%	1.66 [0.51, 5.41]	
Total events	7		3				
Heterogeneity: Chi ² = 2.24, d	f = 2 (P =	0.33);	l² = 11%				
Test for overall effect: Z = 0.8	34 (P = 0.4	40)					
2.8.2 Ferric derisomaltose							
Karla et al (IRONMAN)	56	569	64	568	93.0%	0.87 [0.62, 1.23]	
Subtotal (95% CI)		569		568	93.0%	0.87 [0.62, 1.23]	•
Total events	56		64				
Heterogeneity: Not applicable	Э						
Test for overall effect: Z = 0.7	78 (P = 0.4	43)					
2.8.3 Iron sucrose							
Okonko et al	2	24	0	11	1.0%	2.40 [0.12, 46.19]	
Subtotal (95% CI)		24		11	1.0%	2.40 [0.12, 46.19]	
Total events	2		0				
Heterogeneity: Not applicable	Э						
Test for overall effect: Z = 0.5	58 (P = 0.	56)					
Total (95% CI)		1111		948	100.0%	0.94 [0.68, 1.29]	
Total events	65		67			- ' •	
Heterogeneity: Chi ² = 3.22, d	f = 4 (P =	0.52):	$l^2 = 0\%$				
Test for overall effect: Z = 0.4	•	<i>,</i> .					0.01 0.1 1 10 10
Test for subgroup differences	``	'	– 0 (D –	0 40) 1	2 - 00/		Favours [iron] Favours [control]

Figure S22. Subgroup analysis according to the iron preparation for injection site condition

	Iron	I	Contr	ol		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% CI	
2.9.1 Ferric carboxymaltose								
Anker et al (FAIR-HF) Subtotal (95% CI)	4	305 305	1	154 154	2.5% 2.5%	2.02 [0.23, 17.92] 2.02 [0.23, 17.92]		
Total events	4		1					
Heterogeneity: Not applicable								
Test for overall effect: Z = 0.63 (P = 0.53)								
2.9.2 Ferric derisomaltose								
Karla et al (IRONMAN) Subtotal (95% CI)	57	569 569	52	568 568	97.5% 97.5%	1.09 [0.77, 1.56] 1.09 [0.77, 1.56]		
Total events	57		52					
Heterogeneity: Not applicable								
Test for overall effect: Z = 0.49 (P = 0.62)								
2.9.3 Iron isomaltoside								
Charles-Edwards et al (FERRIC-HF II) Subtotal (95% CI)	1	21 21	0	0 0		Not estimable Not estimable		
Total events Heterogeneity: Not applicable Test for overall effect: Not applicable	1		0					
Total (95% CI)		895		722	100.0%	1.12 [0.79, 1.59]	•	
Total events	62		53					
Heterogeneity: $Chi^2 = 0.30$, df = 1 (P = 0.5)	59); l² = 0	%					0.01 0.1 1 10	100
Test for overall effect: Z = 0.62 (P = 0.54)							Favours [iron] Favours [control]	100
Test for subaroup differences: Chi ² = 0.29). df = 1 (P = 0.5	9). I ² = 0%	6				

Figure S23. Subgroup analysis according to the iron preparation for infection.

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	CI M-H, Fixed, 95% CI
2.10.1 Ferric carboxyma	altose						
Anker et al (FAIR-HF)	2	305	0	154	0.4%	2.53 [0.12, 52.43]	
Subtotal (95% CI)		305		154	0.4%	2.53 [0.12, 52.43]	
Total events	2		0				
Heterogeneity: Not applic	able						
Test for overall effect: Z =	= 0.60 (P =	0.55)					
2.10.2 Ferric derisomalt	ose						
Karla et al (IRONMAN)	142	569	162	568	99.6%	0.88 [0.72, 1.06]	
Subtotal (95% CI)		569		568	99.6%	0.88 [0.72, 1.06]	
Total events	142		162				
Heterogeneity: Not applic	able						
Test for overall effect: Z =	= 1.36 (P =	0.18)					
Total (95% CI)		874		722	100.0%	0.88 [0.73, 1.07]	. ♦
Total events	144		162				
Heterogeneity: Chi ² = 0.4	7, df = 1 (I	> = 0.4	9); I² = 0%	6			
Test for overall effect: Z =	= 1.28 (P =	0.20)					0.01 0.1 1 10 100
Test for subgroup differer	nces: Chi²	= 0.47.	df = 1 (P	= 0.49), l ² = 0%		Favours [iron] Favours [control]

Figure S24. Subgroup analysis according to the iron preparation for nerves system disorder.

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
2.11.1 Ferric carboxymalto	se						
Anker et al (FAIR-HF)	3	305	3	154	7.7%	0.50 [0.10, 2.47]	
Martens et al (IRON-CRT)	0	37	0	38		Not estimable	
Ponikowski et al 2015	2	152	1	152	1.9%	2.00 [0.18, 21.82]	
Yeo et al	1	24	1	25	1.9%	1.04 [0.07, 15.73]	
Subtotal (95% CI)		518		369	11.5%	0.84 [0.27, 2.64]	
Total events	6		5				
Heterogeneity: Chi ² = 0.93, c	df = 2 (P =	0.63);	l² = 0%				
Test for overall effect: Z = 0.3	29 (P = 0.1	77)					
2.11.2 Ferric derisomaltose	e						
Karla et al (IRONMAN)	54	569	45	568	87.1%	1.20 [0.82, 1.75]	
Subtotal (95% CI)		569		568	87.1%	1.20 [0.82, 1.75]	•
Total events	54		45				
Heterogeneity: Not applicabl	е						
Test for overall effect: Z = 0.	94 (P = 0.3	35)					
2.11.3 Iron sucrose							
Okonko et al	1	24	0	11	1.3%	1.44 [0.06, 32.80]	
Subtotal (95% CI)		24		11	1.3%	1.44 [0.06, 32.80]	
Total events	1		0				
Heterogeneity: Not applicabl	е						
Test for overall effect: Z = 0.2	23 (P = 0.8	32)					
Total (95% CI)		1111		948	100.0%	1.16 [0.81, 1.66]	•
Total events	61		50				
Heterogeneity: Chi ² = 1.30, c	f = 4 (P =	0.86);	$ ^2 = 0\%$				
Test for overall effect: Z = 0.8	```	, .					
Test for subaroup difference		,	= 2 (P =)) 84) I	² = 0%		Favours [iron] Favours [control]

Figure S25. Subgroup analysis according to the iron preparation for respiratory, thoracic or mediastinum disorder.

	Iron		Contr		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% Cl
2.12.1 Ferric carboxymaltose							
Anker et al (FAIR-HF)	0	305	3	154	0.0%	0.07 [0.00, 1.39]	
Yeo et al	1	24	0	25	0.7%	3.12 [0.13, 73.04]	
Subtotal (95% CI)		24		25	0.7%	3.12 [0.13, 73.04]	
Total events	1		0				
Heterogeneity: Not applicable							
Test for overall effect: Z = 0.71 (P = 0.48)							
2.12.2 Ferric derisomaltose							
Karla et al (IRONMAN)	55	569	64	568	90.4%	0.86 [0.61, 1.21]	
Subtotal (95% CI)		569		568	90.4%	0.86 [0.61, 1.21]	•
Total events	55		64				
Heterogeneity: Not applicable							
Test for overall effect: Z = 0.88 (P = 0.38)							
2.12.3 Iron isomaltoside							
Charles-Edwards et al (FERRIC-HF II)	0	21	1	19	2.2%	0.30 [0.01, 7.02]	
Subtotal (95% CI)		21		19	2.2%	0.30 [0.01, 7.02]	
Total events	0		1				
Heterogeneity: Not applicable							
Test for overall effect: Z = 0.74 (P = 0.46)							
2.12.4 Iron sucrose							
Okonko et al	0	24	3	11	6.7%	0.07 [0.00, 1.22]	
Subtotal (95% CI)		24		11	6.7%	0.07 [0.00, 1.22]	
Total events	0		3				
Heterogeneity: Not applicable							
Test for overall effect: Z = 1.82 (P = 0.07)							
Total (95% CI)		638		623	100.0%	0.81 [0.58, 1.12]	•
Total events	56		68				
Heterogeneity: Chi ² = 4.01, df = 3 (P = 0.2	26); l² = 2	5%					
Test for overall effect: Z = 1.27 (P = 0.20)							0.01 0.1 1 10 1 Favours [iron] Favours [control]
Test for subgroup differences: Chi ² = 3.98	df = 3(P = 0.2	6) $l^2 = 24$	7%			Favours [iron] Favours [control]

Figure S26. Subgroup analysis according to the iron preparation for vascular disorder.

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events Total		Events Tot		Weight	M-H, Fixed, 95% Cl	I M-H, Fixed, 95% CI
2.13.1 Ferric carboxyma	ltose						
Anker et al (FAIR-HF)	3	305	1	154	3.0%	1.51 [0.16, 14.44]	
Ponikowski et al 2015	1	152	1	152	2.3%	1.00 [0.06, 15.84]	
Yeo et al	0	24	0	25		Not estimable	
Subtotal (95% CI)		481		331	5.2%	1.29 [0.23, 7.37]	
Total events	4		2				
Heterogeneity: Chi ² = 0.0	5, df = 1 (l	P = 0.8	2); l² = 0%	6			
Test for overall effect: Z =	= 0.29 (P =	= 0.77)					
2.13.2 Ferric derisomalt	ose						
Karla et al (IRONMAN)	34	569	42	568	94.8%	0.81 [0.52, 1.25]	
Subtotal (95% CI)		569		568	94.8%	0.81 [0.52, 1.25]	
Total events	34		42				
Heterogeneity: Not applic	able						
Test for overall effect: Z =	= 0.96 (P =	= 0.34)					
Total (95% CI)		1050		899	100.0%	0.83 [0.55, 1.27]	•
Total events	38		44				
Heterogeneity: Chi ² = 0.3	1, df = 2 (l	P = 0.8	6); I² = 0%	6			
Test for overall effect: Z =	= 0.84 (P =	= 0.40)					0.01 0.1 1 10 10 Favours [iron] Favours [control]
Test for subgroup differen	nces: Chi²	= 0.26	df = 1 (P	= 0.61), l ² = 0%		

Figure S27. Subgroup analysis according to the iron preparation for any adverse effect.

	Iron		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	CI M-H, Fixed, 95% CI
2.14.1 Ferric carboxymaltose							
Martens et al (IRON-CRT)	7	37	3	38	73.8%	2.40 [0.67, 8.57]	
Ponikowski et al 2015 Subtotal (95% CI)	121	152 37	115	151 38	0.0% 73.8%	1.05 [0.93, 1.18] 2.40 [0.67, 8.57]	
Total events Heterogeneity: Not applicable Test for overall effect: Z = 1.34 (P = 0.18)	7		3				
2.14.2 Iron isomaltoside							
Charles-Edwards et al (FERRIC-HF II) Subtotal (95% CI)	3	21 21	1	19 19	26.2% 26.2%	2.71 [0.31, 23.93] 2.71 [0.31, 23.93]	
Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.90 (P = 0.37)	3		1				
Total (95% CI)		58		57	100.0%	2.48 [0.83, 7.45]	
Total events Heterogeneity: $Chi^2 = 0.01$, $df = 1$ (P = 0.5 Test for overall effect: Z = 1.62 (P = 0.11) Test for subgroup differences: $Chi^2 = 0.01$			4 2). I² = 0%	6			0.01 0.1 1 10 100 Favours [iron] Favours [control]

Figure S28. Subgroup analysis according to the iron preparation for any adverse event leading to withdrawal.

	Iron		Control		Risk Ratio			Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, Fixed, 95% CI
2.16.1 Ferric carboxymaltose								
Ponikowski et al 2015 Subtotal (95% CI)	14	152 152	19		100.0% 100.0%	0.74 [0.38, 1.42] 0.74 [0.38, 1.42]		-
Total events	14		19					
Heterogeneity: Not applicable								
Test for overall effect: $Z = 0.92$ (P = 0.36)								
2.16.2 Iron isomaltoside								
Charles-Edwards et al (FERRIC-HF II) Subtotal (95% CI)	0	21 21	0	19 19		Not estimable Not estimable		
Total events Heterogeneity: Not applicable Test for overall effect: Not applicable	0		0					
Total (95% CI)		173		171	100.0%	0.74 [0.38, 1.42]		•
Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.92 (P = 0.36) Test for subgroup differences: Not applical	14 ble		19				L 0.01	0.1 1 10 10 Favcurs [iron] Favours [control]

Figure S29. Subgroup analysis according to the iron preparation for abnormal lab test, vital sign or physical finding

	Iron		Contr	ol		Risk Ratio						
Study or Subgroup	Events	Total	Events	Total	Weight M-H, Fixed, 95% CI			M-H, Fixed, 95% CI				
Anker et al (FAIR-HF)	0	305	0	154		Not estimable		_				
Ponikowski et al 2015	1	152	2	152	100.0%	0.50 [0.05, 5.46]						
Total (95% CI)		457		306	100.0%	0.50 [0.05, 5.46]						
Total events	1		2									
Heterogeneity: Not appl	icable						0.01	0.1		10	100	
Test for overall effect: Z = 0.57 (P = 0.57)							0.01	Favours [ii	on] Favou	urs [control]		