In vitro biofilm formation and antibiotic susceptibility of Pseudomonas aeruginosa isolated from airways of patients with cystic fibrosis

Authors

  • Jolanta Długaszewska Poznan University of Medical Sciences Department of Genetics and Pharmaceutical Microbiology
  • Marta Antczak Poznan University of Medical Sciences Department of Genetics and Pharmaceutical Microbiology
  • Izabella Kaczmarek Poznan University of Medical Sciences Department of Genetics and Pharmaceutical Microbiology
  • Renata Jankowiak Poznan University of Medical Sciences Department of Genetics and Pharmaceutical Microbiology
  • Malgorzata Buszkiewicz Poznan University of Medical Sciences Department of Genetics and Pharmaceutical Microbiology
  • Magdalena Herkowiak Poznan University of Medical Sciences Department of Genetics and Pharmaceutical Microbiology
  • Klaudia Michalak Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poland
  • Helena Kukuła Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poland
  • Magdalena Ratajczak Poznan University of Medical Sciences Department of Genetics and Pharmaceutical Microbiology

DOI:

https://doi.org/10.20883/jms.2016.179

Keywords:

biofilm resistance, chronic infections, susceptibility testing

Abstract

Background: Pseudomonas aeruginosa is the predominant cause of airway infections in patients with cystic fibrosis (CF) as a result of its ability to form biofilm. Resistance to antimicrobial agents is the most important feature of biofilm infection. The aim of this study was to evaluate biofilm formation and to compare antibiotic susceptibility of P. aeruginosa living in two modes of growth: planktonic and biofilm, isolated from respiratory tract of CF patients.
Methods: Biofilm formation and biofilm susceptibility to antibiotics were determined using modified microtitere plate method. For susceptibility testing of planktonic culture to antibiotics serial microdilution broth method were used.
Results: More than 95% of isolates were capable to form biofilm. Isolates grown as biofilms were more resistant to tested antibiotics compared to those grown planktonically. Ciprofloxacin showed the highest activity against P. aeruginosa biofilm. In contrast, no bacteriostatic activity was obtain for the highest concentration of piperacillin tested against most of P. aeruginosa strains growing in a biofilm (BIC > 4096 mg/L).
Conclusions: Our study indicates the need to develop a standardized susceptibility testing method for biofilm mode of growth of pathogens. It appears that it is appropriate to introduce a biofilm susceptibility testing to routinely performed tests, as the effect of antibiotics on biofilm eradication may be variable and unpredictable.

Downloads

Download data is not yet available.

References

Gellatly SH. Hancock REW, Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease. 2013 Apr;67:159–173,

Hauser AR, Rello J. Molecular Pathogenesis of Acute Pseudomonas aeruginosa Infections. In: Severe Infections Caused by Pseudomonas aeruginosa. New York: Springer Science+Business Media; 2003; p. 204–212.

Campa M, Bendinelli M, Friedman H. Phenazine Pigments in Pseudomonas aeruginosa Infection. In: Pseudomonas aeruginosa as an Opportunistic Pathogen. New York: Springer Science+Business Media; 1993; p. 43–54.

Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol. 2016 May;24(5):327–37

Rusiecka-Ziółkowska J, Fleischer M, Staroszczyk J. Właściwości immunologiczne Gram-ujemnych pałeczek Pseudomonas aeruginosa. Postępy Hig. Med. Dosw. 2007;(61):95–98.

Kazmierczak BI, Schniederberend M, Jain R. Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence. Curr Opin Microbiol. 2015 Dec; 28:78–82.

Harmsen M, Yang L, Pamp SJ, Tolker-Nielse T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal, FEMS Immunol Med Microbiol. 2010 Aug;59(3):253–268.

Hancock RE, Speert D. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000 Aug:3(4):247–255.

Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg E P. Quorum sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000 Oct;407(6805):762–764.

Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001 July; 358 (9276):135–138.

Wolcott R, Costerton JW, Raoult D, Cutler SJ. The polymicrobial nature of biofilm infection. Clin Microbiol Infect. 2013 Feb;19(2):107–112.

Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilm by antibiotics and antimicrobial peptides. Peptides. 2014 Dec;62:32–37

Karatuna O, Yagci A. Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clin Microbiol Infect. 2010 Dec;16(12):1770–1775.

Walkowiak J, Cichy W. Mukowiscydoza– nadal aktualny problem diagnostyczny i terapeutyczny. Przewodnik Lekarza. 2001;9:86–90.

Goździk J, Cofta S, Mukowiscydoza a infekcje. Przewodnik Lekarza. 2007;1:89–92.

Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol. 2002 Aug;34(2):91–100.

Silva LVRF, Ferreira FA, Reis FJC, Britto MCA, Otavio C, Ribeiro JD. Pseudomonas aeruginosa infection in patients with cystic fibrosis: scientific evidence regarding clinical impact, diagnosis, and treatment. J Bras Pneumol. 2013 Jun-Aug;39(4):495–512.

Dlugaszewska J, Leszczynska M, Lenkowski M, Tatarska A, Pastusiak T, Szyfter W. The pathophysiological role of bacterial biofilms in chronic sinusitis. Eur Arch Otorhinolaryngol. 2016 Aug;273(8):1989–1994

Stepanovic S, Vukovic D, Hola V, Bonawentura G, Djukić S, Ćwirković I, Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007 Aug;115(8):891–899.

Moskowitz SM, Foster JM, Emerson J, Burns JL. Clinically Feasible Biofilm Susceptibility Assay for Isolates of Pseudomonas aeruginosa from Patients with Cystic Fibrosis. J Clin Microbiol. 2004 May;42(5):1915–1922.

Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004 Feb;2:95–108.

Bjamsholt T. The role of bacterial biofilm in chronic infections. APMIS Suppl. 2013 May;136:1–51.

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999 May;284(5418):1318–1322.

Potera C. Forging a link between biofilms and disease. Science. 1999 Mar;283(5409):1837–1839

Mladina R, Skitarelić N, Musić S, Ristić M. A biofilm exists on healthy mucosa of the paranasal sinuses: a prospectively performed, blinded, scanning electron microscope study. Clin Otolaryngol. 2010 Apr;35(2):104–110.

Heydari S, Eftekhar F. Biofilm Formation and ß-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa. Jundishapur J Microbiol. 2015 Mar;8(3):e15514.

Bjarnsholt T, Givskov M. The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa. Anal Bioanal Chem. 2007 Jan;387(2):409–414.

Kirisits MJ, Jeffrey J. Margolis JJ, Purevdorj-Gage BL, Vaughan B, Chopp DL, Stoodley P, Parsek MR. Influence of the Hydrodynamic Environment on Quorum Sensing in Pseudomonas aeruginosa Biofilms. J Bacteriol. 2007 Nov;189(22): 8357–8360.

Breidenstein EB, de la Fuente-Núnez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011 Aug;19(8):419–26.

Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature. 2000 Aug;406:959–64.

Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002 Feb;184:1140–54.

Rasamiravaka T, Quentin Labtani Q, Duez P, El Jaziri M. The Formation of Biofilms by Pseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms Biomed Res Int. 2015;Article ID 759348, 17 pages. 2015;2015:759348. doi: 10.1155/2015/759348. Epub. 2015 Mar 19.

Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998 Apr 10;280(5361):295–298.

Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000 Oct 12;407(6805):762–764.

Bjarnsholt T, Jensen PO, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Hoiby N. Pseudomonas aeruginosa Biofilms in the Respiratory Tract of Cystic Fibrosis Patients. Pediatr Pulmonol. 2009 Jun;44(6):547–558

Ferreira AG, Leao RS, Carvalho-Assef AP, Folescu TW, Barth AL, Marques EA. Influence of biofilm formation in the susceptibility of Pseudomonas aeruginosa from Brazilian patients with cystic fibrosis. APMIS. 2010 Aug;118(8):606–612

Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR. Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function. J Bacteriol. 2001 Sep;183(18):5395–5401.

Taylor PK, Yeung AT, Hancock RE. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol. 2014 Dec;10(191):121–130.

Aaron SD, Ferris W, Ramotar K, Vandemheen K, Chan F, Saginur R, Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm-grown Pseudomonas aeruginosa isolates cultured from sputa of adults with Cystic Fibrosis, J Clin Microbiol. 2002;(40)4172–4179.

Gupta P, Chhibber S, Harjai K. Subinhibitory concentration of ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation & reduction of virulence. Indian J Med Res. 2016 May;143(5):643–651.

Fricks-Lima J, Hendrickson CM, Allgaier M, Zhuo H, Wiener-Kronish JP, Lynch SV, Yang K. Differences in biofilm formation and antimicrobial resistance of Pseudomonas aeruginosa isolated from airways of mechanically ventilated patients and cystic fibrosis patients. Int J Antimicrob Agents. 2011 Apr;37(4):309–315.

Abdi-Ali A, Mohammadi-Mehr M, Agha Alaei Y. Bactericidal activity of various antibiotics against biofilm-producing Pseudomonas aeruginosa, International Journal of Antimicrobial Agents. 2006 Mar;27(3):196–200.

Furiga A, Lajoie B, El Hage S, Baziard G, Roques C. Impairment of Pseudomonas aeruginosa Biofilm Resistance to Antibiotics by Combining the Drugs with a New Quorum-Sensing Inhibitor. Antimicrob Agents Chemother. 2015 Dec 28;60(3):1676–1686.

Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect. 2003 Nov;5(13):1213–1219.

Downloads

Published

2016-12-29

How to Cite

1.
Długaszewska J, Antczak M, Kaczmarek I, Jankowiak R, Buszkiewicz M, Herkowiak M, et al. In vitro biofilm formation and antibiotic susceptibility of Pseudomonas aeruginosa isolated from airways of patients with cystic fibrosis. JMS [Internet]. 2016 Dec. 29 [cited 2024 Mar. 29];85(4):245-53. Available from: https://jms.ump.edu.pl/index.php/JMS/article/view/179

Issue

Section

Original Papers
Received 2016-12-13
Published 2016-12-29